| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsetindis | Unicode version | ||
| Description: Axiom of bounded set induction using implicit substitutions. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bdsetindis.bd |
|
| bdsetindis.nf0 |
|
| bdsetindis.nf1 |
|
| bdsetindis.nf2 |
|
| bdsetindis.nf3 |
|
| bdsetindis.1 |
|
| bdsetindis.2 |
|
| Ref | Expression |
|---|---|
| bdsetindis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 |
. . . . 5
| |
| 2 | bdsetindis.nf0 |
. . . . 5
| |
| 3 | 1, 2 | nfralxy 2544 |
. . . 4
|
| 4 | bdsetindis.nf1 |
. . . 4
| |
| 5 | 3, 4 | nfim 1595 |
. . 3
|
| 6 | nfcv 2348 |
. . . . 5
| |
| 7 | bdsetindis.nf3 |
. . . . 5
| |
| 8 | 6, 7 | nfralxy 2544 |
. . . 4
|
| 9 | bdsetindis.nf2 |
. . . 4
| |
| 10 | 8, 9 | nfim 1595 |
. . 3
|
| 11 | raleq 2702 |
. . . . 5
| |
| 12 | 11 | biimprd 158 |
. . . 4
|
| 13 | bdsetindis.2 |
. . . . 5
| |
| 14 | 13 | equcoms 1731 |
. . . 4
|
| 15 | 12, 14 | imim12d 74 |
. . 3
|
| 16 | 5, 10, 15 | cbv3 1765 |
. 2
|
| 17 | bdsetindis.1 |
. . . . . 6
| |
| 18 | 2, 17 | bj-sbime 15709 |
. . . . 5
|
| 19 | 18 | ralimi 2569 |
. . . 4
|
| 20 | 19 | imim1i 60 |
. . 3
|
| 21 | 20 | alimi 1478 |
. 2
|
| 22 | bdsetindis.bd |
. . 3
| |
| 23 | 22 | ax-bdsetind 15904 |
. 2
|
| 24 | 16, 21, 23 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-bdsetind 15904 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: bj-inf2vnlem3 15908 |
| Copyright terms: Public domain | W3C validator |