| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-sbimeh | GIF version | ||
| Description: A strengthening of sbieh 1804 (same proof). (Contributed by BJ, 16-Dec-2019.) |
| Ref | Expression |
|---|---|
| bj-sbimeh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| bj-sbimeh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-sbimeh | ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1368 | . . . 4 ⊢ ⊤ | |
| 2 | 1 | hbth 1477 | . . 3 ⊢ (⊤ → ∀𝑥⊤) |
| 3 | bj-sbimeh.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → (𝜓 → ∀𝑥𝜓)) |
| 5 | bj-sbimeh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 = 𝑦 → (𝜑 → 𝜓))) |
| 7 | 2, 4, 6 | bj-sbimedh 15501 | . 2 ⊢ (⊤ → ([𝑦 / 𝑥]𝜑 → 𝜓)) |
| 8 | 7 | mptru 1373 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 ⊤wtru 1365 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-sb 1777 |
| This theorem is referenced by: bj-sbime 15503 |
| Copyright terms: Public domain | W3C validator |