Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsal | Unicode version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsal.1 | |
ceqsal.2 | |
ceqsal.3 |
Ref | Expression |
---|---|
ceqsal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsal.2 | . 2 | |
2 | ceqsal.1 | . . 3 | |
3 | ceqsal.3 | . . 3 | |
4 | 2, 3 | ceqsalg 2754 | . 2 |
5 | 1, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wnf 1448 wcel 2136 cvv 2726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: ceqsalv 2756 |
Copyright terms: Public domain | W3C validator |