ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsal Unicode version

Theorem ceqsal 2759
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsal.1  |-  F/ x ps
ceqsal.2  |-  A  e. 
_V
ceqsal.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsal  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem ceqsal
StepHypRef Expression
1 ceqsal.2 . 2  |-  A  e. 
_V
2 ceqsal.1 . . 3  |-  F/ x ps
3 ceqsal.3 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
42, 3ceqsalg 2758 . 2  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
51, 4ax-mp 5 1  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    = wceq 1348   F/wnf 1453    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  ceqsalv  2760
  Copyright terms: Public domain W3C validator