HomeHome Intuitionistic Logic Explorer
Theorem List (p. 28 of 135)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelexi 2701 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  B   =>    |-  A  e.  _V
 
Theoremelexd 2702 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremelisset 2703* An element of a class exists. (Contributed by NM, 1-May-1995.)
 |-  ( A  e.  V  ->  E. x  x  =  A )
 
Theoremelex22 2704* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
 
Theoremelex2 2705* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
 |-  ( A  e.  B  ->  E. x  x  e.  B )
 
Theoremralv 2706 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( A. x  e. 
 _V  ph  <->  A. x ph )
 
Theoremrexv 2707 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( E. x  e. 
 _V  ph  <->  E. x ph )
 
Theoremreuv 2708 A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
 |-  ( E! x  e. 
 _V  ph  <->  E! x ph )
 
Theoremrmov 2709 An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( E* x  e. 
 _V  ph  <->  E* x ph )
 
Theoremrabab 2710 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 { x  e.  _V  |  ph }  =  { x  |  ph }
 
Theoremralcom4 2711* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
 
Theoremrexcom4 2712* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
 
Theoremrexcom4a 2713* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
 
Theoremrexcom4b 2714* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  B  e.  _V   =>    |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
 
Theoremceqsalt 2715* Closed theorem version of ceqsalg 2717. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsralt 2716* Restricted quantifier version of ceqsalt 2715. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsalg 2717* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  -> 
 ph )  <->  ps ) )
 
Theoremceqsal 2718* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
 
Theoremceqsalv 2719* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  ps )
 
Theoremceqsralv 2720* Restricted quantifier version of ceqsalv 2719. (Contributed by NM, 21-Jun-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremgencl 2721* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( th  <->  E. x ( ch 
 /\  A  =  B ) )   &    |-  ( A  =  B  ->  ( ph  <->  ps ) )   &    |-  ( ch  ->  ph )   =>    |-  ( th  ->  ps )
 
Theorem2gencl 2722* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )   &    |-  ( D  e.  S 
 <-> 
 E. y  e.  R  B  =  D )   &    |-  ( A  =  C  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  D  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R )  ->  ph )   =>    |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
 
Theorem3gencl 2723* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( D  e.  S  <->  E. x  e.  R  A  =  D )   &    |-  ( F  e.  S 
 <-> 
 E. y  e.  R  B  =  F )   &    |-  ( G  e.  S  <->  E. z  e.  R  C  =  G )   &    |-  ( A  =  D  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  F  ->  ( ps  <->  ch ) )   &    |-  ( C  =  G  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R  /\  z  e.  R )  ->  ph )   =>    |-  ( ( D  e.  S  /\  F  e.  S  /\  G  e.  S ) 
 ->  th )
 
Theoremcgsexg 2724* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
 |-  ( x  =  A  ->  ch )   &    |-  ( ch  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex2g 2725* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex4g 2726* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S ) )  ->  ( E. x E. y E. z E. w ( ch  /\  ph )  <->  ps ) )
 
Theoremceqsex 2727* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsexv 2728* Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ( x  =  A  /\  ph )  <->  ps )
 
Theoremceqsex2 2729* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |- 
 F/ x ps   &    |-  F/ y ch   &    |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex2v 2730* Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   =>    |-  ( E. x E. y ( x  =  A  /\  y  =  B  /\  ph )  <->  ch )
 
Theoremceqsex3v 2731* Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   =>    |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ph )  <->  th )
 
Theoremceqsex4v 2732* Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   =>    |-  ( E. x E. y E. z E. w ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )  /\  ph )  <->  ta )
 
Theoremceqsex6v 2733* Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ( w  =  D  /\  v  =  E  /\  u  =  F )  /\  ph )  <->  ze )
 
Theoremceqsex8v 2734* Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   &    |-  E  e.  _V   &    |-  F  e.  _V   &    |-  G  e.  _V   &    |-  H  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( z  =  C  ->  ( ch  <->  th ) )   &    |-  ( w  =  D  ->  ( th  <->  ta ) )   &    |-  ( v  =  E  ->  ( ta  <->  et ) )   &    |-  ( u  =  F  ->  ( et  <->  ze ) )   &    |-  ( t  =  G  ->  ( ze  <->  si ) )   &    |-  ( s  =  H  ->  ( si  <->  rh ) )   =>    |-  ( E. x E. y E. z E. w E. v E. u E. t E. s ( ( ( x  =  A  /\  y  =  B )  /\  ( z  =  C  /\  w  =  D ) )  /\  ( ( v  =  E  /\  u  =  F )  /\  (
 t  =  G  /\  s  =  H )
 )  /\  ph )  <->  rh )
 
Theoremgencbvex 2735* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
 
Theoremgencbvex2 2736* Restatement of gencbvex 2735 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th  ->  E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( E. x ( ch  /\  ph )  <->  E. y ( th  /\  ps ) )
 
Theoremgencbval 2737* Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof rewritten by Jim Kingdon, 20-Jun-2018.)
 |-  A  e.  _V   &    |-  ( A  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ( A  =  y  ->  ( ch  <->  th ) )   &    |-  ( th 
 <-> 
 E. x ( ch 
 /\  A  =  y ) )   =>    |-  ( A. x ( ch  ->  ph )  <->  A. y ( th  ->  ps ) )
 
Theoremsbhypf 2738* Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf . (Contributed by Raph Levien, 10-Apr-2004.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( y  =  A  ->  ( [
 y  /  x ] ph 
 <->  ps ) )
 
Theoremvtoclgft 2739 Closed theorem form of vtoclgf 2747. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( ( ( F/_ x A  /\  F/ x ps )  /\  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x ph )  /\  A  e.  V )  ->  ps )
 
Theoremvtocldf 2740 Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   &    |-  F/ x ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  ch )
 
Theoremvtocld 2741* Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ch )
 
Theoremvtoclf 2742* Implicit substitution of a class for a setvar variable. This is a generalization of chvar 1731. (Contributed by NM, 30-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl 2743* Implicit substitution of a class for a setvar variable. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl2 2744* Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtocl3 2745* Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  (
 ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremvtoclb 2746* Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( ch  <->  th )
 
Theoremvtoclgf 2747 Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclg1f 2748* Version of vtoclgf 2747 with one non-freeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 1485 and ax-13 1492. (Contributed by BJ, 1-May-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclg 2749* Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ph   =>    |-  ( A  e.  V  ->  ps )
 
Theoremvtoclbg 2750* Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ch ) )   &    |-  ( x  =  A  ->  ( ps  <->  th ) )   &    |-  ( ph 
 <->  ps )   =>    |-  ( A  e.  V  ->  ( ch  <->  th ) )
 
Theoremvtocl2gf 2751 Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtocl3gf 2752 Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X ) 
 ->  th )
 
Theoremvtocl2g 2753* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  ph   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ch )
 
Theoremvtoclgaf 2754* Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtoclga 2755* Implicit substitution of a class for a setvar variable. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( x  e.  B  ->  ph )   =>    |-  ( A  e.  B  ->  ps )
 
Theoremvtocl2gaf 2756* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ y B   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  ( y  =  B  ->  ( ps  <->  ch ) )   &    |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  (
 ( A  e.  C  /\  B  e.  D ) 
 ->  ch )
 
Theoremvtocl2ga 2757* Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  C  /\  y  e.  D )  ->  ph )   =>    |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
 
Theoremvtocl3gaf 2758* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/_ z A   &    |-  F/_ y B   &    |-  F/_ z B   &    |-  F/_ z C   &    |- 
 F/ x ps   &    |-  F/ y ch   &    |-  F/ z th   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  S  /\  z  e.  T )  ->  ph )   =>    |-  ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T ) 
 ->  th )
 
Theoremvtocl3ga 2759* Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  (
 y  =  B  ->  ( ps  <->  ch ) )   &    |-  (
 z  =  C  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  D  /\  y  e.  R  /\  z  e.  S )  ->  ph )   =>    |-  ( ( A  e.  D  /\  B  e.  R  /\  C  e.  S ) 
 ->  th )
 
Theoremvtocleg 2760* Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Jan-2004.)
 |-  ( x  =  A  -> 
 ph )   =>    |-  ( A  e.  V  -> 
 ph )
 
Theoremvtoclegft 2761* Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2762.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |-  ( ( A  e.  B  /\  F/ x ph  /\ 
 A. x ( x  =  A  ->  ph )
 )  ->  ph )
 
Theoremvtoclef 2762* Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ph   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtocle 2763* Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  ph )   =>    |-  ph
 
Theoremvtoclri 2764* Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   &    |-  A. x  e.  B  ph   =>    |-  ( A  e.  B  ->  ps )
 
Theoremspcimgft 2765 A closed version of spcimgf 2769. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph  ->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcgft 2766 A closed version of spcgf 2771. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( A. x ph  ->  ps ) ) )
 
Theoremspcimegft 2767 A closed version of spcimegf 2770. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  ( ps  ->  ph ) ) 
 ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcegft 2768 A closed version of spcegf 2772. (Contributed by Jim Kingdon, 22-Jun-2018.)
 |- 
 F/ x ps   &    |-  F/_ x A   =>    |-  ( A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  ->  ( A  e.  B  ->  ( ps  ->  E. x ph ) ) )
 
Theoremspcimgf 2769 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph  ->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcimegf 2770 Existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  ( ps  ->  ph ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcgf 2771 Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 2-Feb-1997.) (Revised by Andrew Salmon, 12-Aug-2011.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegf 2772 Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
 |-  F/_ x A   &    |-  F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspcimdv 2773* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x ps  ->  ch )
 )
 
Theoremspcdv 2774* Rule of specialization, using implicit substitution. Analogous to rspcdv 2795. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  ->  ch ) )
 
Theoremspcimedv 2775* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x ps )
 )
 
Theoremspcgv 2776* Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ph 
 ->  ps ) )
 
Theoremspcegv 2777* Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( ps  ->  E. x ph ) )
 
Theoremspc2egv 2778* Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ph ) )
 
Theoremspc2gv 2779* Specialization with 2 quantifiers, using implicit substitution. (Contributed by NM, 27-Apr-2004.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x A. y ph  ->  ps ) )
 
Theoremspc3egv 2780* Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ps 
 ->  E. x E. y E. z ph ) )
 
Theoremspc3gv 2781* Specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.)
 |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x A. y A. z ph  ->  ps ) )
 
Theoremspcv 2782* Rule of specialization, using implicit substitution. (Contributed by NM, 22-Jun-1994.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspcev 2783* Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x ph )
 
Theoremspc2ev 2784* Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ps  ->  E. x E. y ph )
 
Theoremrspct 2785* A closed version of rspc 2786. (Contributed by Andrew Salmon, 6-Jun-2011.)
 |- 
 F/ x ps   =>    |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 ) )
 
Theoremrspc 2786* Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspce 2787* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcv 2788* Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ph  ->  ps )
 )
 
Theoremrspccv 2789* Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps )
 )
 
Theoremrspcva 2790* Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  ps )
 
Theoremrspccva 2791* Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A. x  e.  B  ph  /\  A  e.  B )  ->  ps )
 
Theoremrspcev 2792* Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
 
Theoremrspcimdv 2793* Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcimedv 2794* Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ch  ->  ps )
 )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspcdv 2795* Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps  ->  ch ) )
 
Theoremrspcedv 2796* Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( ch  ->  E. x  e.  B  ps ) )
 
Theoremrspcdva 2797* Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.)
 |-  ( x  =  C  ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  ch )
 
Theoremrspcedvd 2798* Restricted existential specialization, using implicit substitution. Variant of rspcedv 2796. (Contributed by AV, 27-Nov-2019.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  ( ph  ->  ch )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremrspcime 2799* Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ( ph  /\  x  =  A )  ->  ps )   &    |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremrspceaimv 2800* Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  B  /\  A. y  e.  C  ( ps  ->  ch ) )  ->  E. x  e.  B  A. y  e.  C  (
 ph  ->  ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13439
  Copyright terms: Public domain < Previous  Next >