HomeHome Intuitionistic Logic Explorer
Theorem List (p. 28 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremraleqtrdv 2701* Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
Theoremrexeqtrdv 2702* Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremraleqtrrdv 2703* Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
Theoremrexeqtrrdv 2704* Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremraleqbi1dv 2705* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
 
Theoremrexeqbi1dv 2706* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
 
Theoremreueqd 2707* Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
 
Theoremrmoeqd 2708* Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
 
Theoremraleqbidv 2709* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidv 2710* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremraleqbidva 2711* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidva 2712* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremmormo 2713 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x ph  ->  E* x  e.  A  ph )
 
Theoremreu5 2714 Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph  /\  E* x  e.  A  ph ) )
 
Theoremreurex 2715 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
 |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
 
Theoremreurmo 2716 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremrmo5 2717 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph  ->  E! x  e.  A  ph ) )
 
Theoremnrexrmo 2718 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
 |-  ( -.  E. x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremcbvralfw 2719* Rule used to change bound variables, using implicit substitution. Version of cbvralf 2721 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1521 and ax-bndl 1523 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexfw 2720* Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2722 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1521 and ax-bndl 1523 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvralf 2721 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexf 2722 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvralw 2723* Rule used to change bound variables, using implicit substitution. Version of cbvral 2725 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1521 and ax-bndl 1523 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexw 2724* Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2720 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1521 and ax-bndl 1523 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvral 2725* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrex 2726* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreu 2727* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmo 2728* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralv 2729* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexv 2730* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuv 2731* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmov 2732* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralvw 2733* Version of cbvralv 2729 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexvw 2734* Version of cbvrexv 2730 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuvw 2735* Version of cbvreuv 2731 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvraldva2 2736* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. y  e.  B  ch ) )
 
Theoremcbvrexdva2 2737* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  B  ch ) )
 
Theoremcbvraldva 2738* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. y  e.  A  ch ) )
 
Theoremcbvrexdva 2739* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  A  ch ) )
 
Theoremcbvral2vw 2740* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2742 with a disjoint variable condition, which does not require ax-13 2169. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2vw 2741* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2743 with a disjoint variable condition, which does not require ax-13 2169. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral2v 2742* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2v 2743* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral3v 2744* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  w 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  v  ->  ( ch  <->  th ) )   &    |-  (
 z  =  u  ->  ( th  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. w  e.  A  A. v  e.  B  A. u  e.  C  ps )
 
Theoremcbvralsv 2745* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
 
Theoremcbvrexsv 2746* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( E. x  e.  A  ph  <->  E. y  e.  A  [ y  /  x ] ph )
 
Theoremsbralie 2747* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  y  ph  <->  [ y  /  x ] A. y  e.  x  ps )
 
Theoremrabbiia 2748 Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbii 2749 Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2752. (Contributed by Peter Mazsa, 1-Nov-2019.)
 |-  ( ph  <->  ps )   =>    |- 
 { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbidva2 2750* Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch } )
 
Theoremrabbidva 2751* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabbidv 2752* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabeqf 2753 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
 
Theoremrabeqif 2754 Equality theorem for restricted class abstractions. Inference form of rabeqf 2753. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  A  =  B   =>    |- 
 { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 }
 
Theoremrabeq 2755* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
 |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 } )
 
Theoremrabeqi 2756* Equality theorem for restricted class abstractions. Inference form of rabeq 2755. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  A  =  B   =>    |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
 
Theoremrabeqdv 2757* Equality of restricted class abstractions. Deduction form of rabeq 2755. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
 
Theoremrabeqbidv 2758* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeqbidva 2759* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeq2i 2760 Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
 |-  A  =  { x  e.  B  |  ph }   =>    |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
 )
 
Theoremcbvrab 2761 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
Theoremcbvrabv 2762* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
2.1.6  The universal class
 
Syntaxcvv 2763 Extend class notation to include the universal class symbol.
 class  _V
 
Theoremvjust 2764 Soundness justification theorem for df-v 2765. (Contributed by Rodolfo Medina, 27-Apr-2010.)
 |- 
 { x  |  x  =  x }  =  {
 y  |  y  =  y }
 
Definitiondf-v 2765 Define the universal class. Definition 5.20 of [TakeutiZaring] p. 21. Also Definition 2.9 of [Quine] p. 19. (Contributed by NM, 5-Aug-1993.)
 |- 
 _V  =  { x  |  x  =  x }
 
Theoremvex 2766 All setvar variables are sets (see isset 2769). Theorem 6.8 of [Quine] p. 43. (Contributed by NM, 5-Aug-1993.)
 |-  x  e.  _V
 
Theoremelv 2767 Technical lemma used to shorten proofs. If a proposition is implied by  x  e.  _V (which is true, see vex 2766), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.)
 |-  ( x  e.  _V  -> 
 ph )   =>    |-  ph
 
Theoremelvd 2768 Technical lemma used to shorten proofs. If a proposition is implied by  x  e.  _V (which is true, see vex 2766) and another antecedent, then it is implied by the other antecedent. (Contributed by Peter Mazsa, 23-Oct-2018.)
 |-  ( ( ph  /\  x  e.  _V )  ->  ps )   =>    |-  ( ph  ->  ps )
 
Theoremisset 2769* Two ways to say " A is a set": A class  A is a member of the universal class  _V (see df-v 2765) if and only if the class  A exists (i.e. there exists some set  x equal to class 
A). Theorem 6.9 of [Quine] p. 43. Notational convention: We will use the notational device " A  e.  _V " to mean " A is a set" very frequently, for example in uniex 4472. Note the when  A is not a set, it is called a proper class. In some theorems, such as uniexg 4474, in order to shorten certain proofs we use the more general antecedent  A  e.  V instead of  A  e.  _V to mean " A is a set."

Note that a constant is implicitly considered distinct from all variables. This is why  _V is not included in the distinct variable list, even though df-clel 2192 requires that the expression substituted for  B not contain  x. (Also, the Metamath spec does not allow constants in the distinct variable list.) (Contributed by NM, 26-May-1993.)

 |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremissetf 2770 A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  F/_ x A   =>    |-  ( A  e.  _V  <->  E. x  x  =  A )
 
Theoremisseti 2771* A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
 |-  A  e.  _V   =>    |-  E. x  x  =  A
 
Theoremissetri 2772* A way to say " A is a set" (inference form). (Contributed by NM, 5-Aug-1993.)
 |- 
 E. x  x  =  A   =>    |-  A  e.  _V
 
Theoremeqvisset 2773 A class equal to a variable is a set. Note the absence of disjoint variable condition, contrary to isset 2769 and issetri 2772. (Contributed by BJ, 27-Apr-2019.)
 |-  ( x  =  A  ->  A  e.  _V )
 
Theoremelex 2774 If a class is a member of another class, then it is a set. Theorem 6.12 of [Quine] p. 44. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A  e.  B  ->  A  e.  _V )
 
Theoremelexi 2775 If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  B   =>    |-  A  e.  _V
 
Theoremelexd 2776 If a class is a member of another class, it is a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
 |-  ( ph  ->  A  e.  V )   =>    |-  ( ph  ->  A  e.  _V )
 
Theoremelisset 2777* An element of a class exists. (Contributed by NM, 1-May-1995.)
 |-  ( A  e.  V  ->  E. x  x  =  A )
 
Theoremelex22 2778* If two classes each contain another class, then both contain some set. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ( A  e.  B  /\  A  e.  C )  ->  E. x ( x  e.  B  /\  x  e.  C ) )
 
Theoremelex2 2779* If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
 |-  ( A  e.  B  ->  E. x  x  e.  B )
 
Theoremralv 2780 A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( A. x  e. 
 _V  ph  <->  A. x ph )
 
Theoremrexv 2781 An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
 |-  ( E. x  e. 
 _V  ph  <->  E. x ph )
 
Theoremreuv 2782 A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
 |-  ( E! x  e. 
 _V  ph  <->  E! x ph )
 
Theoremrmov 2783 An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( E* x  e. 
 _V  ph  <->  E* x ph )
 
Theoremrabab 2784 A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 { x  e.  _V  |  ph }  =  { x  |  ph }
 
Theoremralcom4 2785* Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A. x  e.  A  A. y ph  <->  A. y A. x  e.  A  ph )
 
Theoremrexcom4 2786* Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( E. x  e.  A  E. y ph  <->  E. y E. x  e.  A  ph )
 
Theoremrexcom4a 2787* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
 
Theoremrexcom4b 2788* Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
 |-  B  e.  _V   =>    |-  ( E. x E. y  e.  A  ( ph  /\  x  =  B )  <->  E. y  e.  A  ph )
 
Theoremceqsalt 2789* Closed theorem version of ceqsalg 2791. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsralt 2790* Restricted quantifier version of ceqsalt 2789. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  (
 ph 
 <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremceqsalg 2791* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( A. x ( x  =  A  -> 
 ph )  <->  ps ) )
 
Theoremceqsal 2792* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ps   &    |-  A  e.  _V   &    |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
 
Theoremceqsalv 2793* A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  A  -> 
 ph )  <->  ps )
 
Theoremceqsralv 2794* Restricted quantifier version of ceqsalv 2793. (Contributed by NM, 21-Jun-2013.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps ) )
 
Theoremgencl 2795* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( th  <->  E. x ( ch 
 /\  A  =  B ) )   &    |-  ( A  =  B  ->  ( ph  <->  ps ) )   &    |-  ( ch  ->  ph )   =>    |-  ( th  ->  ps )
 
Theorem2gencl 2796* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )   &    |-  ( D  e.  S 
 <-> 
 E. y  e.  R  B  =  D )   &    |-  ( A  =  C  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  D  ->  ( ps  <->  ch ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R )  ->  ph )   =>    |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
 
Theorem3gencl 2797* Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
 |-  ( D  e.  S  <->  E. x  e.  R  A  =  D )   &    |-  ( F  e.  S 
 <-> 
 E. y  e.  R  B  =  F )   &    |-  ( G  e.  S  <->  E. z  e.  R  C  =  G )   &    |-  ( A  =  D  ->  (
 ph 
 <->  ps ) )   &    |-  ( B  =  F  ->  ( ps  <->  ch ) )   &    |-  ( C  =  G  ->  ( ch  <->  th ) )   &    |-  (
 ( x  e.  R  /\  y  e.  R  /\  z  e.  R )  ->  ph )   =>    |-  ( ( D  e.  S  /\  F  e.  S  /\  G  e.  S ) 
 ->  th )
 
Theoremcgsexg 2798* Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
 |-  ( x  =  A  ->  ch )   &    |-  ( ch  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex2g 2799* Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
 |-  ( ( x  =  A  /\  y  =  B )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
 
Theoremcgsex4g 2800* An implicit substitution inference for 4 general classes. (Contributed by NM, 5-Aug-1995.)
 |-  ( ( ( x  =  A  /\  y  =  B )  /\  (
 z  =  C  /\  w  =  D )
 )  ->  ch )   &    |-  ( ch  ->  ( ph  <->  ps ) )   =>    |-  ( ( ( A  e.  R  /\  B  e.  S )  /\  ( C  e.  R  /\  D  e.  S ) )  ->  ( E. x E. y E. z E. w ( ch  /\  ph )  <->  ps ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >