HomeHome Intuitionistic Logic Explorer
Theorem List (p. 28 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2701-2800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremreeanv 2701* Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
 |-  ( E. x  e.  A  E. y  e.  B  ( ph  /\  ps ) 
 <->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps ) )
 
Theorem3reeanv 2702* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
 |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  ( ph  /\  ps  /\ 
 ch )  <->  ( E. x  e.  A  ph  /\  E. y  e.  B  ps  /\  E. z  e.  C  ch ) )
 
Theoremnfreu1 2703  x is not free in  E! x  e.  A ph. (Contributed by NM, 19-Mar-1997.)
 |- 
 F/ x E! x  e.  A  ph
 
Theoremnfrmo1 2704  x is not free in  E* x  e.  A ph. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ x E* x  e.  A  ph
 
Theoremnfreudxy 2705* Not-free deduction for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E! y  e.  A  ps )
 
Theoremnfreuw 2706* Not-free for restricted uniqueness. This is a version where  x and  y are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E! y  e.  A  ph
 
Theoremrabid 2707 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
 |-  ( x  e.  { x  e.  A  |  ph
 } 
 <->  ( x  e.  A  /\  ph ) )
 
Theoremrabid2 2708* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( A  =  { x  e.  A  |  ph
 } 
 <-> 
 A. x  e.  A  ph )
 
Theoremrabbi 2709 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2787. (Contributed by NM, 25-Nov-2013.)
 |-  ( A. x  e.  A  ( ps  <->  ch )  <->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch } )
 
Theoremrabswap 2710 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
 |- 
 { x  e.  A  |  x  e.  B }  =  { x  e.  B  |  x  e.  A }
 
Theoremnfrab1 2711 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
 |-  F/_ x { x  e.  A  |  ph }
 
Theoremnfrabw 2712* A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
 |- 
 F/ x ph   &    |-  F/_ x A   =>    |-  F/_ x { y  e.  A  |  ph }
 
Theoremreubida 2713 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremcbvrmow 2714* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo 2764 with a disjoint variable condition. (Contributed by NM, 16-Jun-2017.) (Revised by GG, 23-May-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremreubidva 2715* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremreubidv 2716* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E! x  e.  A  ps 
 <->  E! x  e.  A  ch ) )
 
Theoremreubiia 2717 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )
 
Theoremreubii 2718 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
 |-  ( ph  <->  ps )   =>    |-  ( E! x  e.  A  ph  <->  E! x  e.  A  ps )
 
Theoremrmobida 2719 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobidva 2720* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobidv 2721* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E* x  e.  A  ps 
 <->  E* x  e.  A  ch ) )
 
Theoremrmobiia 2722 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
 
Theoremrmobii 2723 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
 |-  ( ph  <->  ps )   =>    |-  ( E* x  e.  A  ph  <->  E* x  e.  A  ps )
 
Theoremraleqf 2724 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeqf 2725 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1f 2726 Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1f 2727 Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleq 2728* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
 
Theoremrexeq 2729* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
 |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ph ) )
 
Theoremreueq1 2730* Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
 
Theoremrmoeq1 2731* Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
 
Theoremraleqi 2732* Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ph )
 
Theoremrexeqi 2733* Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  A  =  B   =>    |-  ( E. x  e.  A  ph  <->  E. x  e.  B  ph )
 
Theoremraleqdv 2734* Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ps ) )
 
Theoremrexeqdv 2735* Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ps ) )
 
Theoremraleqtrdv 2736* Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
Theoremrexeqtrdv 2737* Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremraleqtrrdv 2738* Substitution of equal classes into a restricted universal quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  A. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  A. x  e.  B  ps )
 
Theoremrexeqtrrdv 2739* Substitution of equal classes into a restricted existential quantifier. (Contributed by Matthew House, 21-Jul-2025.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  ( ph  ->  B  =  A )   =>    |-  ( ph  ->  E. x  e.  B  ps )
 
Theoremraleqbi1dv 2740* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ps ) )
 
Theoremrexeqbi1dv 2741* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ps ) )
 
Theoremreueqd 2742* Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ps ) )
 
Theoremrmoeqd 2743* Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A  =  B  ->  ( ph  <->  ps ) )   =>    |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ps ) )
 
Theoremraleqbidv 2744* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidv 2745* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremraleqbidva 2746* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. x  e.  B  ch ) )
 
Theoremrexeqbidva 2747* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. x  e.  B  ch ) )
 
Theoremmormo 2748 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x ph  ->  E* x  e.  A  ph )
 
Theoremreu5 2749 Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph  /\  E* x  e.  A  ph ) )
 
Theoremreurex 2750 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
 |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
 
Theoremreurmo 2751 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
 |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremrmo5 2752 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph  ->  E! x  e.  A  ph ) )
 
Theoremnrexrmo 2753 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
 |-  ( -.  E. x  e.  A  ph  ->  E* x  e.  A  ph )
 
Theoremcbvralfw 2754* Rule used to change bound variables, using implicit substitution. Version of cbvralf 2756 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1553 and ax-bndl 1555 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexfw 2755* Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2757 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1553 and ax-bndl 1555 in the proof. (Contributed by FL, 27-Apr-2008.) (Revised by GG, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvralf 2756 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexf 2757 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvralw 2758* Rule used to change bound variables, using implicit substitution. Version of cbvral 2761 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1553 and ax-bndl 1555 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexw 2759* Rule used to change bound variables, using implicit substitution. Version of cbvrexfw 2755 with more disjoint variable conditions. Although we don't do so yet, we expect the disjoint variable conditions will allow us to remove reliance on ax-i12 1553 and ax-bndl 1555 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuw 2760* Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreu 2763 with a disjoint variable condition. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (Revised by Wolf Lammen, 10-Dec-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvral 2761* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrex 2762* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreu 2763* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmo 2764* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralv 2765* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexv 2766* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuv 2767* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvrmov 2768* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
 
Theoremcbvralvw 2769* Version of cbvralv 2765 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
 
Theoremcbvrexvw 2770* Version of cbvrexv 2766 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
 
Theoremcbvreuvw 2771* Version of cbvreuv 2767 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
 
Theoremcbvraldva2 2772* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( A. x  e.  A  ps 
 <-> 
 A. y  e.  B  ch ) )
 
Theoremcbvrexdva2 2773* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   &    |-  (
 ( ph  /\  x  =  y )  ->  A  =  B )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  B  ch ) )
 
Theoremcbvraldva 2774* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps 
 <-> 
 A. y  e.  A  ch ) )
 
Theoremcbvrexdva 2775* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps 
 <-> 
 E. y  e.  A  ch ) )
 
Theoremcbvral2vw 2776* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvral2v 2778 with a disjoint variable condition, which does not require ax-13 2202. (Contributed by NM, 10-Aug-2004.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2vw 2777* Change bound variables of double restricted universal quantification, using implicit substitution. Version of cbvrex2v 2779 with a disjoint variable condition, which does not require ax-13 2202. (Contributed by FL, 2-Jul-2012.) (Revised by GG, 10-Jan-2024.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral2v 2778* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
 
Theoremcbvrex2v 2779* Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
 |-  ( x  =  z 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  w  ->  ( ch  <->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
 
Theoremcbvral3v 2780* Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
 |-  ( x  =  w 
 ->  ( ph  <->  ch ) )   &    |-  (
 y  =  v  ->  ( ch  <->  th ) )   &    |-  (
 z  =  u  ->  ( th  <->  ps ) )   =>    |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. w  e.  A  A. v  e.  B  A. u  e.  C  ps )
 
Theoremcbvralsv 2781* Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( A. x  e.  A  ph  <->  A. y  e.  A  [ y  /  x ] ph )
 
Theoremcbvrexsv 2782* Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
 |-  ( E. x  e.  A  ph  <->  E. y  e.  A  [ y  /  x ] ph )
 
Theoremsbralie 2783* Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  y  ph  <->  [ y  /  x ] A. y  e.  x  ps )
 
Theoremrabbiia 2784 Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
 |-  ( x  e.  A  ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbii 2785 Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2788. (Contributed by Peter Mazsa, 1-Nov-2019.)
 |-  ( ph  <->  ps )   =>    |- 
 { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
 
Theoremrabbidva2 2786* Equivalent wff's yield equal restricted class abstractions. (Contributed by Thierry Arnoux, 4-Feb-2017.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  <->  ( x  e.  B  /\  ch )
 ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch } )
 
Theoremrabbidva 2787* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabbidv 2788* Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  A  |  ch }
 )
 
Theoremrabeqf 2789 Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph } )
 
Theoremrabeqif 2790 Equality theorem for restricted class abstractions. Inference form of rabeqf 2789. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  A  =  B   =>    |- 
 { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 }
 
Theoremrabeq 2791* Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.)
 |-  ( A  =  B  ->  { x  e.  A  |  ph }  =  { x  e.  B  |  ph
 } )
 
Theoremrabeqi 2792* Equality theorem for restricted class abstractions. Inference form of rabeq 2791. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  A  =  B   =>    |-  { x  e.  A  |  ph }  =  { x  e.  B  |  ph }
 
Theoremrabeqdv 2793* Equality of restricted class abstractions. Deduction form of rabeq 2791. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
 
Theoremrabeqbidv 2794* Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeqbidva 2795* Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ch }
 )
 
Theoremrabeq2i 2796 Inference from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
 |-  A  =  { x  e.  B  |  ph }   =>    |-  ( x  e.  A  <->  ( x  e.  B  /\  ph )
 )
 
Theoremcbvrab 2797 Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
Theoremcbvrabv 2798* Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
 
2.1.6  The universal class
 
Syntaxcvv 2799 Extend class notation to include the universal class symbol.
 class  _V
 
Theoremvjust 2800 Soundness justification theorem for df-v 2801. (Contributed by Rodolfo Medina, 27-Apr-2010.)
 |- 
 { x  |  x  =  x }  =  {
 y  |  y  =  y }
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >