ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalg Unicode version

Theorem ceqsalg 2767
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
ceqsalg.1  |-  F/ x ps
ceqsalg.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsalg  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsalg
StepHypRef Expression
1 elisset 2753 . . 3  |-  ( A  e.  V  ->  E. x  x  =  A )
2 nfa1 1541 . . . 4  |-  F/ x A. x ( x  =  A  ->  ph )
3 ceqsalg.1 . . . 4  |-  F/ x ps
4 ceqsalg.2 . . . . . . 7  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
54biimpd 144 . . . . . 6  |-  ( x  =  A  ->  ( ph  ->  ps ) )
65a2i 11 . . . . 5  |-  ( ( x  =  A  ->  ph )  ->  ( x  =  A  ->  ps ) )
76sps 1537 . . . 4  |-  ( A. x ( x  =  A  ->  ph )  -> 
( x  =  A  ->  ps ) )
82, 3, 7exlimd 1597 . . 3  |-  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  ps ) )
91, 8syl5com 29 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  ->  ps ) )
104biimprcd 160 . . 3  |-  ( ps 
->  ( x  =  A  ->  ph ) )
113, 10alrimi 1522 . 2  |-  ( ps 
->  A. x ( x  =  A  ->  ph )
)
129, 11impbid1 142 1  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   F/wnf 1460   E.wex 1492    e. wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  ceqsal  2768  sbc6g  2989  uniiunlem  3246  sucprcreg  4550  funimass4  5569  ralrnmpo  5992
  Copyright terms: Public domain W3C validator