| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsalg | Unicode version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 29-Oct-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 |
|
| ceqsalg.2 |
|
| Ref | Expression |
|---|---|
| ceqsalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2777 |
. . 3
| |
| 2 | nfa1 1555 |
. . . 4
| |
| 3 | ceqsalg.1 |
. . . 4
| |
| 4 | ceqsalg.2 |
. . . . . . 7
| |
| 5 | 4 | biimpd 144 |
. . . . . 6
|
| 6 | 5 | a2i 11 |
. . . . 5
|
| 7 | 6 | sps 1551 |
. . . 4
|
| 8 | 2, 3, 7 | exlimd 1611 |
. . 3
|
| 9 | 1, 8 | syl5com 29 |
. 2
|
| 10 | 4 | biimprcd 160 |
. . 3
|
| 11 | 3, 10 | alrimi 1536 |
. 2
|
| 12 | 9, 11 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: ceqsal 2792 sbc6g 3014 uniiunlem 3273 sucprcreg 4586 funimass4 5614 ralrnmpo 6041 |
| Copyright terms: Public domain | W3C validator |