Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsalv | Unicode version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsalv.1 | |
ceqsalv.2 |
Ref | Expression |
---|---|
ceqsalv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | ceqsalv.1 | . 2 | |
3 | ceqsalv.2 | . 2 | |
4 | 1, 2, 3 | ceqsal 2759 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: gencbval 2778 clel2 2863 clel4 2866 reu8 2926 raliunxp 4752 fv3 5519 |
Copyright terms: Public domain | W3C validator |