ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalv Unicode version

Theorem ceqsalv 2649
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsalv.1  |-  A  e. 
_V
ceqsalv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsalv  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsalv
StepHypRef Expression
1 nfv 1466 . 2  |-  F/ x ps
2 ceqsalv.1 . 2  |-  A  e. 
_V
3 ceqsalv.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3ceqsal 2648 1  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1287    = wceq 1289    e. wcel 1438   _Vcvv 2619
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621
This theorem is referenced by:  gencbval  2667  clel2  2748  clel4  2751  reu8  2809  raliunxp  4565  fv3  5312
  Copyright terms: Public domain W3C validator