Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsalv | Unicode version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
ceqsalv.1 | |
ceqsalv.2 |
Ref | Expression |
---|---|
ceqsalv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1526 | . 2 | |
2 | ceqsalv.1 | . 2 | |
3 | ceqsalv.2 | . 2 | |
4 | 1, 2, 3 | ceqsal 2764 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wal 1351 wceq 1353 wcel 2146 cvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-v 2737 |
This theorem is referenced by: gencbval 2783 clel2 2868 clel4 2871 reu8 2931 raliunxp 4761 fv3 5530 |
Copyright terms: Public domain | W3C validator |