ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalv Unicode version

Theorem ceqsalv 2756
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsalv.1  |-  A  e. 
_V
ceqsalv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsalv  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsalv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ps
2 ceqsalv.1 . 2  |-  A  e. 
_V
3 ceqsalv.2 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
41, 2, 3ceqsal 2755 1  |-  ( A. x ( x  =  A  ->  ph )  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  gencbval  2774  clel2  2859  clel4  2862  reu8  2922  raliunxp  4745  fv3  5509
  Copyright terms: Public domain W3C validator