ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnen2og Unicode version

Theorem snnen2og 6917
Description: A singleton  { A } is never equinumerous with the ordinal number 2. If  A is a proper class, see snnen2oprc 6918. (Contributed by Jim Kingdon, 1-Sep-2021.)
Assertion
Ref Expression
snnen2og  |-  ( A  e.  V  ->  -.  { A }  ~~  2o )

Proof of Theorem snnen2og
StepHypRef Expression
1 1onn 6575 . . 3  |-  1o  e.  om
2 php5 6916 . . 3  |-  ( 1o  e.  om  ->  -.  1o  ~~  suc  1o )
31, 2ax-mp 5 . 2  |-  -.  1o  ~~ 
suc  1o
4 ensn1g 6853 . 2  |-  ( A  e.  V  ->  { A }  ~~  1o )
5 df-2o 6472 . . . . 5  |-  2o  =  suc  1o
65eqcomi 2197 . . . 4  |-  suc  1o  =  2o
76breq2i 4038 . . 3  |-  ( 1o 
~~  suc  1o  <->  1o  ~~  2o )
8 ensymb 6836 . . . . 5  |-  ( { A }  ~~  1o  <->  1o 
~~  { A }
)
9 entr 6840 . . . . . 6  |-  ( ( 1o  ~~  { A }  /\  { A }  ~~  2o )  ->  1o  ~~  2o )
109ex 115 . . . . 5  |-  ( 1o 
~~  { A }  ->  ( { A }  ~~  2o  ->  1o  ~~  2o ) )
118, 10sylbi 121 . . . 4  |-  ( { A }  ~~  1o  ->  ( { A }  ~~  2o  ->  1o  ~~  2o ) )
1211con3rr3 634 . . 3  |-  ( -.  1o  ~~  2o  ->  ( { A }  ~~  1o  ->  -.  { A }  ~~  2o ) )
137, 12sylnbi 679 . 2  |-  ( -.  1o  ~~  suc  1o  ->  ( { A }  ~~  1o  ->  -.  { A }  ~~  2o ) )
143, 4, 13mpsyl 65 1  |-  ( A  e.  V  ->  -.  { A }  ~~  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2164   {csn 3619   class class class wbr 4030   suc csuc 4397   omcom 4623   1oc1o 6464   2oc2o 6465    ~~ cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator