ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfromcon GIF version

Theorem dcfromcon 1471
Description: The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 857), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfromcon.1 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
dcfromcon.2 (𝜓 ↔ ⊤)
dcfromcon.3 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
Assertion
Ref Expression
dcfromcon DECID 𝜒

Proof of Theorem dcfromcon
StepHypRef Expression
1 nnexmid 854 . . . . 5 ¬ ¬ (𝜒 ∨ ¬ 𝜒)
21pm2.21i 649 . . . 4 (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤)
3 dcfromcon.3 . . . . 5 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
4 dcfromcon.1 . . . . . . 7 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
54notbii 672 . . . . . 6 𝜑 ↔ ¬ (𝜒 ∨ ¬ 𝜒))
6 dcfromcon.2 . . . . . . 7 (𝜓 ↔ ⊤)
76notbii 672 . . . . . 6 𝜓 ↔ ¬ ⊤)
85, 7imbi12i 239 . . . . 5 ((¬ 𝜑 → ¬ 𝜓) ↔ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤))
96, 4imbi12i 239 . . . . 5 ((𝜓𝜑) ↔ (⊤ → (𝜒 ∨ ¬ 𝜒)))
103, 8, 93imtr3i 200 . . . 4 ((¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) → (⊤ → (𝜒 ∨ ¬ 𝜒)))
112, 10ax-mp 5 . . 3 (⊤ → (𝜒 ∨ ¬ 𝜒))
1211mptru 1384 . 2 (𝜒 ∨ ¬ 𝜒)
13 df-dc 839 . 2 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
1412, 13mpbir 146 1 DECID 𝜒
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 712  DECID wdc 838  wtru 1376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-dc 839  df-tru 1378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator