| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfromcon | GIF version | ||
| Description: The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 855), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfromcon.1 | ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) |
| dcfromcon.2 | ⊢ (𝜓 ↔ ⊤) |
| dcfromcon.3 | ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| dcfromcon | ⊢ DECID 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexmid 852 | . . . . 5 ⊢ ¬ ¬ (𝜒 ∨ ¬ 𝜒) | |
| 2 | 1 | pm2.21i 647 | . . . 4 ⊢ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) |
| 3 | dcfromcon.3 | . . . . 5 ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | dcfromcon.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 5 | 4 | notbii 670 | . . . . . 6 ⊢ (¬ 𝜑 ↔ ¬ (𝜒 ∨ ¬ 𝜒)) |
| 6 | dcfromcon.2 | . . . . . . 7 ⊢ (𝜓 ↔ ⊤) | |
| 7 | 6 | notbii 670 | . . . . . 6 ⊢ (¬ 𝜓 ↔ ¬ ⊤) |
| 8 | 5, 7 | imbi12i 239 | . . . . 5 ⊢ ((¬ 𝜑 → ¬ 𝜓) ↔ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤)) |
| 9 | 6, 4 | imbi12i 239 | . . . . 5 ⊢ ((𝜓 → 𝜑) ↔ (⊤ → (𝜒 ∨ ¬ 𝜒))) |
| 10 | 3, 8, 9 | 3imtr3i 200 | . . . 4 ⊢ ((¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) → (⊤ → (𝜒 ∨ ¬ 𝜒))) |
| 11 | 2, 10 | ax-mp 5 | . . 3 ⊢ (⊤ → (𝜒 ∨ ¬ 𝜒)) |
| 12 | 11 | mptru 1382 | . 2 ⊢ (𝜒 ∨ ¬ 𝜒) |
| 13 | df-dc 837 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 14 | 12, 13 | mpbir 146 | 1 ⊢ DECID 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 DECID wdc 836 ⊤wtru 1374 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |