ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfromcon GIF version

Theorem dcfromcon 1469
Description: The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 855), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfromcon.1 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
dcfromcon.2 (𝜓 ↔ ⊤)
dcfromcon.3 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
Assertion
Ref Expression
dcfromcon DECID 𝜒

Proof of Theorem dcfromcon
StepHypRef Expression
1 nnexmid 852 . . . . 5 ¬ ¬ (𝜒 ∨ ¬ 𝜒)
21pm2.21i 647 . . . 4 (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤)
3 dcfromcon.3 . . . . 5 ((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
4 dcfromcon.1 . . . . . . 7 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
54notbii 670 . . . . . 6 𝜑 ↔ ¬ (𝜒 ∨ ¬ 𝜒))
6 dcfromcon.2 . . . . . . 7 (𝜓 ↔ ⊤)
76notbii 670 . . . . . 6 𝜓 ↔ ¬ ⊤)
85, 7imbi12i 239 . . . . 5 ((¬ 𝜑 → ¬ 𝜓) ↔ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤))
96, 4imbi12i 239 . . . . 5 ((𝜓𝜑) ↔ (⊤ → (𝜒 ∨ ¬ 𝜒)))
103, 8, 93imtr3i 200 . . . 4 ((¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) → (⊤ → (𝜒 ∨ ¬ 𝜒)))
112, 10ax-mp 5 . . 3 (⊤ → (𝜒 ∨ ¬ 𝜒))
1211mptru 1382 . 2 (𝜒 ∨ ¬ 𝜒)
13 df-dc 837 . 2 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
1412, 13mpbir 146 1 DECID 𝜒
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  DECID wdc 836  wtru 1374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator