| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfromcon | GIF version | ||
| Description: The decidability of a proposition 𝜒 follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 854), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfromcon.1 | ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) |
| dcfromcon.2 | ⊢ (𝜓 ↔ ⊤) |
| dcfromcon.3 | ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| dcfromcon | ⊢ DECID 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnexmid 851 | . . . . 5 ⊢ ¬ ¬ (𝜒 ∨ ¬ 𝜒) | |
| 2 | 1 | pm2.21i 647 | . . . 4 ⊢ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) |
| 3 | dcfromcon.3 | . . . . 5 ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | |
| 4 | dcfromcon.1 | . . . . . . 7 ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 5 | 4 | notbii 669 | . . . . . 6 ⊢ (¬ 𝜑 ↔ ¬ (𝜒 ∨ ¬ 𝜒)) |
| 6 | dcfromcon.2 | . . . . . . 7 ⊢ (𝜓 ↔ ⊤) | |
| 7 | 6 | notbii 669 | . . . . . 6 ⊢ (¬ 𝜓 ↔ ¬ ⊤) |
| 8 | 5, 7 | imbi12i 239 | . . . . 5 ⊢ ((¬ 𝜑 → ¬ 𝜓) ↔ (¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤)) |
| 9 | 6, 4 | imbi12i 239 | . . . . 5 ⊢ ((𝜓 → 𝜑) ↔ (⊤ → (𝜒 ∨ ¬ 𝜒))) |
| 10 | 3, 8, 9 | 3imtr3i 200 | . . . 4 ⊢ ((¬ (𝜒 ∨ ¬ 𝜒) → ¬ ⊤) → (⊤ → (𝜒 ∨ ¬ 𝜒))) |
| 11 | 2, 10 | ax-mp 5 | . . 3 ⊢ (⊤ → (𝜒 ∨ ¬ 𝜒)) |
| 12 | 11 | mptru 1373 | . 2 ⊢ (𝜒 ∨ ¬ 𝜒) |
| 13 | df-dc 836 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 14 | 12, 13 | mpbir 146 | 1 ⊢ DECID 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 709 DECID wdc 835 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |