ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcim Unicode version

Theorem dcim 846
Description: An implication between two decidable propositions is decidable. (Contributed by Jim Kingdon, 28-Mar-2018.)
Assertion
Ref Expression
dcim  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  ->  ps )
) )

Proof of Theorem dcim
StepHypRef Expression
1 df-dc 840 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
2 df-dc 840 . . . . . . . 8  |-  (DECID  ps  <->  ( ps  \/  -.  ps ) )
32anbi2i 457 . . . . . . 7  |-  ( (
ph  /\ DECID  ps )  <->  ( ph  /\  ( ps  \/  -.  ps ) ) )
4 andi 823 . . . . . . 7  |-  ( (
ph  /\  ( ps  \/  -.  ps ) )  <-> 
( ( ph  /\  ps )  \/  ( ph  /\  -.  ps )
) )
53, 4bitri 184 . . . . . 6  |-  ( (
ph  /\ DECID  ps )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  -.  ps ) ) )
6 pm3.4 333 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ph  ->  ps ) )
7 annimim 690 . . . . . . 7  |-  ( (
ph  /\  -.  ps )  ->  -.  ( ph  ->  ps ) )
86, 7orim12i 764 . . . . . 6  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
-.  ps ) )  -> 
( ( ph  ->  ps )  \/  -.  ( ph  ->  ps ) ) )
95, 8sylbi 121 . . . . 5  |-  ( (
ph  /\ DECID  ps )  ->  (
( ph  ->  ps )  \/  -.  ( ph  ->  ps ) ) )
10 df-dc 840 . . . . 5  |-  (DECID  ( ph  ->  ps )  <->  ( ( ph  ->  ps )  \/ 
-.  ( ph  ->  ps ) ) )
119, 10sylibr 134 . . . 4  |-  ( (
ph  /\ DECID  ps )  -> DECID  ( ph  ->  ps ) )
1211ex 115 . . 3  |-  ( ph  ->  (DECID  ps  -> DECID  ( ph  ->  ps ) ) )
13 ax-in2 618 . . . . 5  |-  ( -. 
ph  ->  ( ph  ->  ps ) )
1413a1d 22 . . . 4  |-  ( -. 
ph  ->  (DECID  ps  ->  ( ph  ->  ps ) ) )
15 orc 717 . . . . 5  |-  ( (
ph  ->  ps )  -> 
( ( ph  ->  ps )  \/  -.  ( ph  ->  ps ) ) )
1615, 10sylibr 134 . . . 4  |-  ( (
ph  ->  ps )  -> DECID  ( ph  ->  ps ) )
1714, 16syl6 33 . . 3  |-  ( -. 
ph  ->  (DECID  ps  -> DECID  ( ph  ->  ps ) ) )
1812, 17jaoi 721 . 2  |-  ( (
ph  \/  -.  ph )  ->  (DECID  ps  -> DECID  ( ph  ->  ps ) ) )
191, 18sylbi 121 1  |-  (DECID  ph  ->  (DECID  ps 
-> DECID  ( ph  ->  ps )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840
This theorem is referenced by:  pm4.79dc  908  pm5.11dc  914  dcbi  942  annimdc  943
  Copyright terms: Public domain W3C validator