ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi Unicode version

Theorem andi 813
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )

Proof of Theorem andi
StepHypRef Expression
1 orc 707 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
2 olc 706 . . 3  |-  ( (
ph  /\  ch )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
31, 2jaodan 792 . 2  |-  ( (
ph  /\  ( ps  \/  ch ) )  -> 
( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
4 orc 707 . . . 4  |-  ( ps 
->  ( ps  \/  ch ) )
54anim2i 340 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ( ps  \/  ch ) ) )
6 olc 706 . . . 4  |-  ( ch 
->  ( ps  \/  ch ) )
76anim2i 340 . . 3  |-  ( (
ph  /\  ch )  ->  ( ph  /\  ( ps  \/  ch ) ) )
85, 7jaoi 711 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
ch ) )  -> 
( ph  /\  ( ps  \/  ch ) ) )
93, 8impbii 125 1  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  andir  814  anddi  816  dcim  836  dcan  928  excxor  1373  sbequilem  1831  sborv  1883  r19.43  2628  indi  3374  difindiss  3381  unrab  3398  unipr  3810  uniun  3815  unopab  4068  xpundi  4667  coundir  5113  unpreima  5621  tpostpos  6243  elni2  7276  elznn0nn  9226
  Copyright terms: Public domain W3C validator