ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi Unicode version

Theorem andi 820
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )

Proof of Theorem andi
StepHypRef Expression
1 orc 714 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
2 olc 713 . . 3  |-  ( (
ph  /\  ch )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
31, 2jaodan 799 . 2  |-  ( (
ph  /\  ( ps  \/  ch ) )  -> 
( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
4 orc 714 . . . 4  |-  ( ps 
->  ( ps  \/  ch ) )
54anim2i 342 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ( ps  \/  ch ) ) )
6 olc 713 . . . 4  |-  ( ch 
->  ( ps  \/  ch ) )
76anim2i 342 . . 3  |-  ( (
ph  /\  ch )  ->  ( ph  /\  ( ps  \/  ch ) ) )
85, 7jaoi 718 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
ch ) )  -> 
( ph  /\  ( ps  \/  ch ) ) )
93, 8impbii 126 1  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  andir  821  anddi  823  dcim  843  excxor  1398  sbequilem  1861  sborv  1914  r19.43  2664  indi  3420  difindiss  3427  unrab  3444  unipr  3864  uniun  3869  unopab  4123  xpundi  4731  coundir  5185  unpreima  5705  tpostpos  6350  elni2  7427  elznn0nn  9386  lgsquadlem3  15556
  Copyright terms: Public domain W3C validator