ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  andi Unicode version

Theorem andi 819
Description: Distributive law for conjunction. Theorem *4.4 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
andi  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )

Proof of Theorem andi
StepHypRef Expression
1 orc 713 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
2 olc 712 . . 3  |-  ( (
ph  /\  ch )  ->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
31, 2jaodan 798 . 2  |-  ( (
ph  /\  ( ps  \/  ch ) )  -> 
( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
4 orc 713 . . . 4  |-  ( ps 
->  ( ps  \/  ch ) )
54anim2i 342 . . 3  |-  ( (
ph  /\  ps )  ->  ( ph  /\  ( ps  \/  ch ) ) )
6 olc 712 . . . 4  |-  ( ch 
->  ( ps  \/  ch ) )
76anim2i 342 . . 3  |-  ( (
ph  /\  ch )  ->  ( ph  /\  ( ps  \/  ch ) ) )
85, 7jaoi 717 . 2  |-  ( ( ( ph  /\  ps )  \/  ( ph  /\ 
ch ) )  -> 
( ph  /\  ( ps  \/  ch ) ) )
93, 8impbii 126 1  |-  ( (
ph  /\  ( ps  \/  ch ) )  <->  ( ( ph  /\  ps )  \/  ( ph  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  andir  820  anddi  822  dcim  842  excxor  1397  sbequilem  1860  sborv  1913  r19.43  2663  indi  3419  difindiss  3426  unrab  3443  unipr  3863  uniun  3868  unopab  4122  xpundi  4730  coundir  5184  unpreima  5704  tpostpos  6349  elni2  7426  elznn0nn  9385  lgsquadlem3  15527
  Copyright terms: Public domain W3C validator