| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > decidr | Unicode version | ||
| Description: Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.) |
| Ref | Expression |
|---|---|
| decidr.1 |
|
| Ref | Expression |
|---|---|
| decidr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decidr.1 |
. . . 4
| |
| 2 | df-dc 836 |
. . . 4
| |
| 3 | 1, 2 | imbitrrdi 162 |
. . 3
|
| 4 | 3 | alrimiv 1888 |
. 2
|
| 5 | df-dcin 15440 |
. . 3
| |
| 6 | df-ral 2480 |
. . 3
| |
| 7 | 5, 6 | bitri 184 |
. 2
|
| 8 | 4, 7 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-ral 2480 df-dcin 15440 |
| This theorem is referenced by: decidin 15443 uzdcinzz 15444 sumdc2 15445 |
| Copyright terms: Public domain | W3C validator |