Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidr Unicode version

Theorem decidr 14117
Description: Sufficient condition for being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Hypothesis
Ref Expression
decidr.1  |-  ( ph  ->  ( x  e.  B  ->  ( x  e.  A  \/  -.  x  e.  A
) ) )
Assertion
Ref Expression
decidr  |-  ( ph  ->  A DECIDin  B )
Distinct variable groups:    x, A    x, B    ph, x

Proof of Theorem decidr
StepHypRef Expression
1 decidr.1 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  ( x  e.  A  \/  -.  x  e.  A
) ) )
2 df-dc 835 . . . 4  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
31, 2syl6ibr 162 . . 3  |-  ( ph  ->  ( x  e.  B  -> DECID  x  e.  A ) )
43alrimiv 1872 . 2  |-  ( ph  ->  A. x ( x  e.  B  -> DECID  x  e.  A
) )
5 df-dcin 14115 . . 3  |-  ( A DECIDin  B  <->  A. x  e.  B DECID  x  e.  A
)
6 df-ral 2458 . . 3  |-  ( A. x  e.  B DECID  x  e.  A 
<-> 
A. x ( x  e.  B  -> DECID  x  e.  A
) )
75, 6bitri 184 . 2  |-  ( A DECIDin  B  <->  A. x
( x  e.  B  -> DECID  x  e.  A ) )
84, 7sylibr 134 1  |-  ( ph  ->  A DECIDin  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 708  DECID wdc 834   A.wal 1351    e. wcel 2146   A.wral 2453   DECIDin wdcin 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-17 1524
This theorem depends on definitions:  df-bi 117  df-dc 835  df-ral 2458  df-dcin 14115
This theorem is referenced by:  decidin  14118  uzdcinzz  14119  sumdc2  14120
  Copyright terms: Public domain W3C validator