Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidin Unicode version

Theorem decidin 16161
Description: If A is a decidable subclass of B (meaning: it is a subclass of B and it is decidable in B), and B is decidable in C, then A is decidable in C. (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
decidin.ss  |-  ( ph  ->  A  C_  B )
decidin.a  |-  ( ph  ->  A DECIDin  B )
decidin.b  |-  ( ph  ->  B DECIDin  C )
Assertion
Ref Expression
decidin  |-  ( ph  ->  A DECIDin  C )

Proof of Theorem decidin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 decidin.b . . . 4  |-  ( ph  ->  B DECIDin  C )
2 decidi 16159 . . . 4  |-  ( B DECIDin  C  -> 
( x  e.  C  ->  ( x  e.  B  \/  -.  x  e.  B
) ) )
31, 2syl 14 . . 3  |-  ( ph  ->  ( x  e.  C  ->  ( x  e.  B  \/  -.  x  e.  B
) ) )
4 decidin.a . . . . 5  |-  ( ph  ->  A DECIDin  B )
5 decidi 16159 . . . . 5  |-  ( A DECIDin  B  -> 
( x  e.  B  ->  ( x  e.  A  \/  -.  x  e.  A
) ) )
64, 5syl 14 . . . 4  |-  ( ph  ->  ( x  e.  B  ->  ( x  e.  A  \/  -.  x  e.  A
) ) )
7 decidin.ss . . . . . 6  |-  ( ph  ->  A  C_  B )
87ssneld 3226 . . . . 5  |-  ( ph  ->  ( -.  x  e.  B  ->  -.  x  e.  A ) )
9 olc 716 . . . . 5  |-  ( -.  x  e.  A  -> 
( x  e.  A  \/  -.  x  e.  A
) )
108, 9syl6 33 . . . 4  |-  ( ph  ->  ( -.  x  e.  B  ->  ( x  e.  A  \/  -.  x  e.  A )
) )
116, 10jaod 722 . . 3  |-  ( ph  ->  ( ( x  e.  B  \/  -.  x  e.  B )  ->  (
x  e.  A  \/  -.  x  e.  A
) ) )
123, 11syld 45 . 2  |-  ( ph  ->  ( x  e.  C  ->  ( x  e.  A  \/  -.  x  e.  A
) ) )
1312decidr 16160 1  |-  ( ph  ->  A DECIDin  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713    e. wcel 2200    C_ wss 3197   DECIDin wdcin 16157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-dcin 16158
This theorem is referenced by:  sumdc2  16163
  Copyright terms: Public domain W3C validator