Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi Unicode version

Theorem decidi 14632
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )

Proof of Theorem decidi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-dcin 14631 . 2  |-  ( A DECIDin  B  <->  A. x  e.  B DECID  x  e.  A
)
2 df-dc 835 . . . 4  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
32ralbii 2483 . . 3  |-  ( A. x  e.  B DECID  x  e.  A 
<-> 
A. x  e.  B  ( x  e.  A  \/  -.  x  e.  A
) )
4 eleq1 2240 . . . . 5  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
54notbid 667 . . . . 5  |-  ( x  =  X  ->  ( -.  x  e.  A  <->  -.  X  e.  A ) )
64, 5orbi12d 793 . . . 4  |-  ( x  =  X  ->  (
( x  e.  A  \/  -.  x  e.  A
)  <->  ( X  e.  A  \/  -.  X  e.  A ) ) )
76rspccv 2840 . . 3  |-  ( A. x  e.  B  (
x  e.  A  \/  -.  x  e.  A
)  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
83, 7sylbi 121 . 2  |-  ( A. x  e.  B DECID  x  e.  A  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
91, 8sylbi 121 1  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   DECIDin wdcin 14630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dcin 14631
This theorem is referenced by:  decidin  14634
  Copyright terms: Public domain W3C validator