Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi Unicode version

Theorem decidi 16159
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )

Proof of Theorem decidi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-dcin 16158 . 2  |-  ( A DECIDin  B  <->  A. x  e.  B DECID  x  e.  A
)
2 df-dc 840 . . . 4  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
32ralbii 2536 . . 3  |-  ( A. x  e.  B DECID  x  e.  A 
<-> 
A. x  e.  B  ( x  e.  A  \/  -.  x  e.  A
) )
4 eleq1 2292 . . . . 5  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
54notbid 671 . . . . 5  |-  ( x  =  X  ->  ( -.  x  e.  A  <->  -.  X  e.  A ) )
64, 5orbi12d 798 . . . 4  |-  ( x  =  X  ->  (
( x  e.  A  \/  -.  x  e.  A
)  <->  ( X  e.  A  \/  -.  X  e.  A ) ) )
76rspccv 2904 . . 3  |-  ( A. x  e.  B  (
x  e.  A  \/  -.  x  e.  A
)  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
83, 7sylbi 121 . 2  |-  ( A. x  e.  B DECID  x  e.  A  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
91, 8sylbi 121 1  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   DECIDin wdcin 16157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dcin 16158
This theorem is referenced by:  decidin  16161
  Copyright terms: Public domain W3C validator