Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  decidi Unicode version

Theorem decidi 13676
Description: Property of being decidable in another class. (Contributed by BJ, 19-Feb-2022.)
Assertion
Ref Expression
decidi  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )

Proof of Theorem decidi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-dcin 13675 . 2  |-  ( A DECIDin  B  <->  A. x  e.  B DECID  x  e.  A
)
2 df-dc 825 . . . 4  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
32ralbii 2472 . . 3  |-  ( A. x  e.  B DECID  x  e.  A 
<-> 
A. x  e.  B  ( x  e.  A  \/  -.  x  e.  A
) )
4 eleq1 2229 . . . . 5  |-  ( x  =  X  ->  (
x  e.  A  <->  X  e.  A ) )
54notbid 657 . . . . 5  |-  ( x  =  X  ->  ( -.  x  e.  A  <->  -.  X  e.  A ) )
64, 5orbi12d 783 . . . 4  |-  ( x  =  X  ->  (
( x  e.  A  \/  -.  x  e.  A
)  <->  ( X  e.  A  \/  -.  X  e.  A ) ) )
76rspccv 2827 . . 3  |-  ( A. x  e.  B  (
x  e.  A  \/  -.  x  e.  A
)  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
83, 7sylbi 120 . 2  |-  ( A. x  e.  B DECID  x  e.  A  ->  ( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A )
) )
91, 8sylbi 120 1  |-  ( A DECIDin  B  -> 
( X  e.  B  ->  ( X  e.  A  \/  -.  X  e.  A
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   A.wral 2444   DECIDin wdcin 13674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dcin 13675
This theorem is referenced by:  decidin  13678
  Copyright terms: Public domain W3C validator