Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 Unicode version

Theorem sumdc2 16163
Description: Alternate proof of sumdc 11869, without disjoint variable condition on  N ,  x (longer because the statement is taylored to the proof sumdc 11869). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m  |-  ( ph  ->  M  e.  ZZ )
sumdc2.ss  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
sumdc2.dc  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
sumdc2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
sumdc2  |-  ( ph  -> DECID  N  e.  A )
Distinct variable groups:    x, M    x, A
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem sumdc2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2 sumdc2.dc . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
3 eleq1 2292 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43dcbid 843 . . . . . . 7  |-  ( x  =  y  ->  (DECID  x  e.  A  <-> DECID  y  e.  A )
)
54rspccv 2904 . . . . . 6  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> DECID  y  e.  A ) )
6 exmiddc 841 . . . . . 6  |-  (DECID  y  e.  A  ->  ( y  e.  A  \/  -.  y  e.  A )
)
75, 6syl6 33 . . . . 5  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
82, 7syl 14 . . . 4  |-  ( ph  ->  ( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
98decidr 16160 . . 3  |-  ( ph  ->  A DECIDin  (
ZZ>= `  M ) )
10 sumdc2.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
11 uzdcinzz 16162 . . . 4  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M ) DECIDin  ZZ )
1210, 11syl 14 . . 3  |-  ( ph  ->  ( ZZ>= `  M ) DECIDin  ZZ )
131, 9, 12decidin 16161 . 2  |-  ( ph  ->  A DECIDin  ZZ )
14 sumdc2.n . 2  |-  ( ph  ->  N  e.  ZZ )
15 df-dcin 16158 . . 3  |-  ( A DECIDin  ZZ  <->  A. z  e.  ZZ DECID  z  e.  A )
16 nfv 1574 . . . . . 6  |-  F/ zDECID  N  e.  A
1716rspct 2900 . . . . 5  |-  ( A. z ( z  =  N  ->  (DECID  z  e.  A 
<-> DECID  N  e.  A ) )  ->  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A ) ) )
18 eleq1 2292 . . . . . 6  |-  ( z  =  N  ->  (
z  e.  A  <->  N  e.  A ) )
1918dcbid 843 . . . . 5  |-  ( z  =  N  ->  (DECID  z  e.  A  <-> DECID  N  e.  A )
)
2017, 19mpg 1497 . . . 4  |-  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A
) )
2120com12 30 . . 3  |-  ( A. z  e.  ZZ DECID  z  e.  A  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2215, 21sylbi 121 . 2  |-  ( A DECIDin  ZZ  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2313, 14, 22sylc 62 1  |-  ( ph  -> DECID  N  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5318   ZZcz 9446   ZZ>=cuz 9722   DECIDin wdcin 16157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-dcin 16158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator