Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sumdc2 Unicode version

Theorem sumdc2 13177
Description: Alternate proof of sumdc 11159, without disjoint variable condition on  N ,  x (longer because the statement is taylored to the proof sumdc 11159). (Contributed by BJ, 19-Feb-2022.)
Hypotheses
Ref Expression
sumdc2.m  |-  ( ph  ->  M  e.  ZZ )
sumdc2.ss  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
sumdc2.dc  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
sumdc2.n  |-  ( ph  ->  N  e.  ZZ )
Assertion
Ref Expression
sumdc2  |-  ( ph  -> DECID  N  e.  A )
Distinct variable groups:    x, M    x, A
Allowed substitution hints:    ph( x)    N( x)

Proof of Theorem sumdc2
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumdc2.ss . . 3  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
2 sumdc2.dc . . . . 5  |-  ( ph  ->  A. x  e.  (
ZZ>= `  M )DECID  x  e.  A )
3 eleq1 2203 . . . . . . . 8  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
43dcbid 824 . . . . . . 7  |-  ( x  =  y  ->  (DECID  x  e.  A  <-> DECID  y  e.  A )
)
54rspccv 2790 . . . . . 6  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> DECID  y  e.  A ) )
6 exmiddc 822 . . . . . 6  |-  (DECID  y  e.  A  ->  ( y  e.  A  \/  -.  y  e.  A )
)
75, 6syl6 33 . . . . 5  |-  ( A. x  e.  ( ZZ>= `  M )DECID  x  e.  A  -> 
( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
82, 7syl 14 . . . 4  |-  ( ph  ->  ( y  e.  (
ZZ>= `  M )  -> 
( y  e.  A  \/  -.  y  e.  A
) ) )
98decidr 13174 . . 3  |-  ( ph  ->  A DECIDin  (
ZZ>= `  M ) )
10 sumdc2.m . . . 4  |-  ( ph  ->  M  e.  ZZ )
11 uzdcinzz 13176 . . . 4  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  M ) DECIDin  ZZ )
1210, 11syl 14 . . 3  |-  ( ph  ->  ( ZZ>= `  M ) DECIDin  ZZ )
131, 9, 12decidin 13175 . 2  |-  ( ph  ->  A DECIDin  ZZ )
14 sumdc2.n . 2  |-  ( ph  ->  N  e.  ZZ )
15 df-dcin 13172 . . 3  |-  ( A DECIDin  ZZ  <->  A. z  e.  ZZ DECID  z  e.  A )
16 nfv 1509 . . . . . 6  |-  F/ zDECID  N  e.  A
1716rspct 2786 . . . . 5  |-  ( A. z ( z  =  N  ->  (DECID  z  e.  A 
<-> DECID  N  e.  A ) )  ->  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A ) ) )
18 eleq1 2203 . . . . . 6  |-  ( z  =  N  ->  (
z  e.  A  <->  N  e.  A ) )
1918dcbid 824 . . . . 5  |-  ( z  =  N  ->  (DECID  z  e.  A  <-> DECID  N  e.  A )
)
2017, 19mpg 1428 . . . 4  |-  ( N  e.  ZZ  ->  ( A. z  e.  ZZ DECID  z  e.  A  -> DECID  N  e.  A
) )
2120com12 30 . . 3  |-  ( A. z  e.  ZZ DECID  z  e.  A  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2215, 21sylbi 120 . 2  |-  ( A DECIDin  ZZ  ->  ( N  e.  ZZ  -> DECID  N  e.  A ) )
2313, 14, 22sylc 62 1  |-  ( ph  -> DECID  N  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481   A.wral 2417    C_ wss 3076   ` cfv 5131   ZZcz 9078   ZZ>=cuz 9350   DECIDin wdcin 13171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-dcin 13172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator