ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg Unicode version

Definition df-subg 13424
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13443), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13438), contains the neutral element of the group (see subg0 13434) and contains the inverses for all of its elements (see subginvcl 13437). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13421 . 2  class SubGrp
2 vw . . 3  setvar  w
3 cgrp 13250 . . 3  class  Grp
42cv 1371 . . . . . 6  class  w
5 vs . . . . . . 7  setvar  s
65cv 1371 . . . . . 6  class  s
7 cress 12752 . . . . . 6  classs
84, 6, 7co 5934 . . . . 5  class  ( ws  s )
98, 3wcel 2175 . . . 4  wff  ( ws  s )  e.  Grp
10 cbs 12751 . . . . . 6  class  Base
114, 10cfv 5268 . . . . 5  class  ( Base `  w )
1211cpw 3615 . . . 4  class  ~P ( Base `  w )
139, 5, 12crab 2487 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }
142, 3, 13cmpt 4104 . 2  class  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
151, 14wceq 1372 1  wff SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Colors of variables: wff set class
This definition is referenced by:  issubg  13427  subgex  13430
  Copyright terms: Public domain W3C validator