![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-subg | Unicode version |
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13262), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13257), contains the neutral element of the group (see subg0 13253) and contains the inverses for all of its elements (see subginvcl 13256). (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
df-subg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csubg 13240 |
. 2
![]() | |
2 | vw |
. . 3
![]() ![]() | |
3 | cgrp 13075 |
. . 3
![]() ![]() | |
4 | 2 | cv 1363 |
. . . . . 6
![]() ![]() |
5 | vs |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1363 |
. . . . . 6
![]() ![]() |
7 | cress 12622 |
. . . . . 6
![]() | |
8 | 4, 6, 7 | co 5919 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
9 | 8, 3 | wcel 2164 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cbs 12621 |
. . . . . 6
![]() ![]() | |
11 | 4, 10 | cfv 5255 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | cpw 3602 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 9, 5, 12 | crab 2476 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 3, 13 | cmpt 4091 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1364 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: issubg 13246 subgex 13249 |
Copyright terms: Public domain | W3C validator |