ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg Unicode version

Definition df-subg 13074
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13093), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13088), contains the neutral element of the group (see subg0 13084) and contains the inverses for all of its elements (see subginvcl 13087). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13071 . 2  class SubGrp
2 vw . . 3  setvar  w
3 cgrp 12910 . . 3  class  Grp
42cv 1362 . . . . . 6  class  w
5 vs . . . . . . 7  setvar  s
65cv 1362 . . . . . 6  class  s
7 cress 12480 . . . . . 6  classs
84, 6, 7co 5890 . . . . 5  class  ( ws  s )
98, 3wcel 2159 . . . 4  wff  ( ws  s )  e.  Grp
10 cbs 12479 . . . . . 6  class  Base
114, 10cfv 5230 . . . . 5  class  ( Base `  w )
1211cpw 3589 . . . 4  class  ~P ( Base `  w )
139, 5, 12crab 2471 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }
142, 3, 13cmpt 4078 . 2  class  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
151, 14wceq 1363 1  wff SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Colors of variables: wff set class
This definition is referenced by:  issubg  13077  subgex  13080
  Copyright terms: Public domain W3C validator