ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg Unicode version

Definition df-subg 13702
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13721), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13716), contains the neutral element of the group (see subg0 13712) and contains the inverses for all of its elements (see subginvcl 13715). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13699 . 2  class SubGrp
2 vw . . 3  setvar  w
3 cgrp 13528 . . 3  class  Grp
42cv 1394 . . . . . 6  class  w
5 vs . . . . . . 7  setvar  s
65cv 1394 . . . . . 6  class  s
7 cress 13028 . . . . . 6  classs
84, 6, 7co 6000 . . . . 5  class  ( ws  s )
98, 3wcel 2200 . . . 4  wff  ( ws  s )  e.  Grp
10 cbs 13027 . . . . . 6  class  Base
114, 10cfv 5317 . . . . 5  class  ( Base `  w )
1211cpw 3649 . . . 4  class  ~P ( Base `  w )
139, 5, 12crab 2512 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }
142, 3, 13cmpt 4144 . 2  class  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
151, 14wceq 1395 1  wff SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Colors of variables: wff set class
This definition is referenced by:  issubg  13705  subgex  13708
  Copyright terms: Public domain W3C validator