![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-subg | Unicode version |
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13259), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13254), contains the neutral element of the group (see subg0 13250) and contains the inverses for all of its elements (see subginvcl 13253). (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
df-subg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csubg 13237 |
. 2
![]() | |
2 | vw |
. . 3
![]() ![]() | |
3 | cgrp 13072 |
. . 3
![]() ![]() | |
4 | 2 | cv 1363 |
. . . . . 6
![]() ![]() |
5 | vs |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1363 |
. . . . . 6
![]() ![]() |
7 | cress 12619 |
. . . . . 6
![]() | |
8 | 4, 6, 7 | co 5918 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
9 | 8, 3 | wcel 2164 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cbs 12618 |
. . . . . 6
![]() ![]() | |
11 | 4, 10 | cfv 5254 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | cpw 3601 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 9, 5, 12 | crab 2476 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 3, 13 | cmpt 4090 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1364 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: issubg 13243 subgex 13246 |
Copyright terms: Public domain | W3C validator |