ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg Unicode version

Definition df-subg 13035
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13054), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13049), contains the neutral element of the group (see subg0 13045) and contains the inverses for all of its elements (see subginvcl 13048). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13032 . 2  class SubGrp
2 vw . . 3  setvar  w
3 cgrp 12882 . . 3  class  Grp
42cv 1352 . . . . . 6  class  w
5 vs . . . . . . 7  setvar  s
65cv 1352 . . . . . 6  class  s
7 cress 12465 . . . . . 6  classs
84, 6, 7co 5877 . . . . 5  class  ( ws  s )
98, 3wcel 2148 . . . 4  wff  ( ws  s )  e.  Grp
10 cbs 12464 . . . . . 6  class  Base
114, 10cfv 5218 . . . . 5  class  ( Base `  w )
1211cpw 3577 . . . 4  class  ~P ( Base `  w )
139, 5, 12crab 2459 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }
142, 3, 13cmpt 4066 . 2  class  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
151, 14wceq 1353 1  wff SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Colors of variables: wff set class
This definition is referenced by:  issubg  13038  subgex  13041
  Copyright terms: Public domain W3C validator