![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-subg | Unicode version |
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13093), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13088), contains the neutral element of the group (see subg0 13084) and contains the inverses for all of its elements (see subginvcl 13087). (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
df-subg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csubg 13071 |
. 2
![]() | |
2 | vw |
. . 3
![]() ![]() | |
3 | cgrp 12910 |
. . 3
![]() ![]() | |
4 | 2 | cv 1362 |
. . . . . 6
![]() ![]() |
5 | vs |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1362 |
. . . . . 6
![]() ![]() |
7 | cress 12480 |
. . . . . 6
![]() | |
8 | 4, 6, 7 | co 5890 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
9 | 8, 3 | wcel 2159 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cbs 12479 |
. . . . . 6
![]() ![]() | |
11 | 4, 10 | cfv 5230 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | cpw 3589 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 9, 5, 12 | crab 2471 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 3, 13 | cmpt 4078 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1363 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: issubg 13077 subgex 13080 |
Copyright terms: Public domain | W3C validator |