![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-subg | Unicode version |
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13054), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13049), contains the neutral element of the group (see subg0 13045) and contains the inverses for all of its elements (see subginvcl 13048). (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
df-subg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csubg 13032 |
. 2
![]() | |
2 | vw |
. . 3
![]() ![]() | |
3 | cgrp 12882 |
. . 3
![]() ![]() | |
4 | 2 | cv 1352 |
. . . . . 6
![]() ![]() |
5 | vs |
. . . . . . 7
![]() ![]() | |
6 | 5 | cv 1352 |
. . . . . 6
![]() ![]() |
7 | cress 12465 |
. . . . . 6
![]() | |
8 | 4, 6, 7 | co 5877 |
. . . . 5
![]() ![]() ![]() ![]() ![]() |
9 | 8, 3 | wcel 2148 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | cbs 12464 |
. . . . . 6
![]() ![]() | |
11 | 4, 10 | cfv 5218 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | cpw 3577 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 9, 5, 12 | crab 2459 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 2, 3, 13 | cmpt 4066 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 1, 14 | wceq 1353 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: issubg 13038 subgex 13041 |
Copyright terms: Public domain | W3C validator |