ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-subg Unicode version

Definition df-subg 13581
Description: Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13600), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13595), contains the neutral element of the group (see subg0 13591) and contains the inverses for all of its elements (see subginvcl 13594). (Contributed by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
df-subg  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Distinct variable group:    w, s

Detailed syntax breakdown of Definition df-subg
StepHypRef Expression
1 csubg 13578 . 2  class SubGrp
2 vw . . 3  setvar  w
3 cgrp 13407 . . 3  class  Grp
42cv 1372 . . . . . 6  class  w
5 vs . . . . . . 7  setvar  s
65cv 1372 . . . . . 6  class  s
7 cress 12908 . . . . . 6  classs
84, 6, 7co 5957 . . . . 5  class  ( ws  s )
98, 3wcel 2177 . . . 4  wff  ( ws  s )  e.  Grp
10 cbs 12907 . . . . . 6  class  Base
114, 10cfv 5280 . . . . 5  class  ( Base `  w )
1211cpw 3621 . . . 4  class  ~P ( Base `  w )
139, 5, 12crab 2489 . . 3  class  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }
142, 3, 13cmpt 4113 . 2  class  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp } )
151, 14wceq 1373 1  wff SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
Colors of variables: wff set class
This definition is referenced by:  issubg  13584  subgex  13587
  Copyright terms: Public domain W3C validator