ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex Unicode version

Theorem subgex 13041
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )

Proof of Theorem subgex
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13035 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
2 fveq2 5517 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
32pweqd 3582 . . . 4  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P ( Base `  G
) )
4 oveq1 5884 . . . . 5  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
54eleq1d 2246 . . . 4  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
63, 5rabeqbidv 2734 . . 3  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P ( Base `  G
)  |  ( Gs  s )  e.  Grp }
)
7 id 19 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
8 basfn 12522 . . . . . 6  |-  Base  Fn  _V
9 elex 2750 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
10 funfvex 5534 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5318 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
1312pwexd 4183 . . . 4  |-  ( G  e.  Grp  ->  ~P ( Base `  G )  e.  _V )
14 rabexg 4148 . . . 4  |-  ( ~P ( Base `  G
)  e.  _V  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp }  e.  _V )
1513, 14syl 14 . . 3  |-  ( G  e.  Grp  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e.  Grp }  e.  _V )
161, 6, 7, 15fvmptd3 5611 . 2  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp } )
1716, 15eqeltrd 2254 1  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2739   ~Pcpw 3577    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   Grpcgrp 12882  SubGrpcsubg 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-subg 13035
This theorem is referenced by:  isnsg  13067
  Copyright terms: Public domain W3C validator