ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex Unicode version

Theorem subgex 13454
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )

Proof of Theorem subgex
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13448 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
2 fveq2 5575 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
32pweqd 3620 . . . 4  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P ( Base `  G
) )
4 oveq1 5950 . . . . 5  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
54eleq1d 2273 . . . 4  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
63, 5rabeqbidv 2766 . . 3  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P ( Base `  G
)  |  ( Gs  s )  e.  Grp }
)
7 id 19 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
8 basfn 12832 . . . . . 6  |-  Base  Fn  _V
9 elex 2782 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
10 funfvex 5592 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5375 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
1312pwexd 4224 . . . 4  |-  ( G  e.  Grp  ->  ~P ( Base `  G )  e.  _V )
14 rabexg 4186 . . . 4  |-  ( ~P ( Base `  G
)  e.  _V  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp }  e.  _V )
1513, 14syl 14 . . 3  |-  ( G  e.  Grp  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e.  Grp }  e.  _V )
161, 6, 7, 15fvmptd3 5672 . 2  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp } )
1716, 15eqeltrd 2281 1  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {crab 2487   _Vcvv 2771   ~Pcpw 3615    Fn wfn 5265   ` cfv 5270  (class class class)co 5943   Basecbs 12774   ↾s cress 12775   Grpcgrp 13274  SubGrpcsubg 13445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-subg 13448
This theorem is referenced by:  isnsg  13480
  Copyright terms: Public domain W3C validator