ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex Unicode version

Theorem subgex 13708
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )

Proof of Theorem subgex
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13702 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
2 fveq2 5626 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
32pweqd 3654 . . . 4  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P ( Base `  G
) )
4 oveq1 6007 . . . . 5  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
54eleq1d 2298 . . . 4  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
63, 5rabeqbidv 2794 . . 3  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P ( Base `  G
)  |  ( Gs  s )  e.  Grp }
)
7 id 19 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
8 basfn 13086 . . . . . 6  |-  Base  Fn  _V
9 elex 2811 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
10 funfvex 5643 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5422 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
1312pwexd 4264 . . . 4  |-  ( G  e.  Grp  ->  ~P ( Base `  G )  e.  _V )
14 rabexg 4226 . . . 4  |-  ( ~P ( Base `  G
)  e.  _V  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp }  e.  _V )
1513, 14syl 14 . . 3  |-  ( G  e.  Grp  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e.  Grp }  e.  _V )
161, 6, 7, 15fvmptd3 5727 . 2  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp } )
1716, 15eqeltrd 2306 1  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   ~Pcpw 3649    Fn wfn 5312   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   Grpcgrp 13528  SubGrpcsubg 13699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-subg 13702
This theorem is referenced by:  isnsg  13734
  Copyright terms: Public domain W3C validator