ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgex Unicode version

Theorem subgex 13068
Description: The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.)
Assertion
Ref Expression
subgex  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )

Proof of Theorem subgex
Dummy variables  s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13062 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
2 fveq2 5527 . . . . 5  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
32pweqd 3592 . . . 4  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P ( Base `  G
) )
4 oveq1 5895 . . . . 5  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
54eleq1d 2256 . . . 4  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
63, 5rabeqbidv 2744 . . 3  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P ( Base `  G
)  |  ( Gs  s )  e.  Grp }
)
7 id 19 . . 3  |-  ( G  e.  Grp  ->  G  e.  Grp )
8 basfn 12534 . . . . . 6  |-  Base  Fn  _V
9 elex 2760 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  _V )
10 funfvex 5544 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1110funfni 5328 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
128, 9, 11sylancr 414 . . . . 5  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
1312pwexd 4193 . . . 4  |-  ( G  e.  Grp  ->  ~P ( Base `  G )  e.  _V )
14 rabexg 4158 . . . 4  |-  ( ~P ( Base `  G
)  e.  _V  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp }  e.  _V )
1513, 14syl 14 . . 3  |-  ( G  e.  Grp  ->  { s  e.  ~P ( Base `  G )  |  ( Gs  s )  e.  Grp }  e.  _V )
161, 6, 7, 15fvmptd3 5622 . 2  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P ( Base `  G )  |  ( Gs  s )  e. 
Grp } )
1716, 15eqeltrd 2264 1  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   {crab 2469   _Vcvv 2749   ~Pcpw 3587    Fn wfn 5223   ` cfv 5228  (class class class)co 5888   Basecbs 12476   ↾s cress 12477   Grpcgrp 12899  SubGrpcsubg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-cnex 7916  ax-resscn 7917  ax-1re 7919  ax-addrcl 7922
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-inn 8934  df-ndx 12479  df-slot 12480  df-base 12482  df-subg 13062
This theorem is referenced by:  isnsg  13094
  Copyright terms: Public domain W3C validator