| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubg | Unicode version | ||
| Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b |
|
| Ref | Expression |
|---|---|
| issubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subg 13376 |
. . 3
| |
| 2 | 1 | mptrcl 5647 |
. 2
|
| 3 | simp1 999 |
. 2
| |
| 4 | fveq2 5561 |
. . . . . . . . 9
| |
| 5 | issubg.b |
. . . . . . . . 9
| |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . . . 8
|
| 7 | 6 | pweqd 3611 |
. . . . . . 7
|
| 8 | oveq1 5932 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2265 |
. . . . . . 7
|
| 10 | 7, 9 | rabeqbidv 2758 |
. . . . . 6
|
| 11 | id 19 |
. . . . . 6
| |
| 12 | basfn 12761 |
. . . . . . . . . 10
| |
| 13 | elex 2774 |
. . . . . . . . . 10
| |
| 14 | funfvex 5578 |
. . . . . . . . . . 11
| |
| 15 | 14 | funfni 5361 |
. . . . . . . . . 10
|
| 16 | 12, 13, 15 | sylancr 414 |
. . . . . . . . 9
|
| 17 | 5, 16 | eqeltrid 2283 |
. . . . . . . 8
|
| 18 | 17 | pwexd 4215 |
. . . . . . 7
|
| 19 | rabexg 4177 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 1, 10, 11, 20 | fvmptd3 5658 |
. . . . 5
|
| 22 | 21 | eleq2d 2266 |
. . . 4
|
| 23 | oveq2 5933 |
. . . . . . 7
| |
| 24 | 23 | eleq1d 2265 |
. . . . . 6
|
| 25 | 24 | elrab 2920 |
. . . . 5
|
| 26 | elpw2g 4190 |
. . . . . . 7
| |
| 27 | 17, 26 | syl 14 |
. . . . . 6
|
| 28 | 27 | anbi1d 465 |
. . . . 5
|
| 29 | 25, 28 | bitrid 192 |
. . . 4
|
| 30 | ibar 301 |
. . . 4
| |
| 31 | 22, 29, 30 | 3bitrd 214 |
. . 3
|
| 32 | 3anass 984 |
. . 3
| |
| 33 | 31, 32 | bitr4di 198 |
. 2
|
| 34 | 2, 3, 33 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-subg 13376 |
| This theorem is referenced by: subgss 13380 subgid 13381 subggrp 13383 subgbas 13384 subgrcl 13385 issubg2m 13395 resgrpisgrp 13401 subsubg 13403 opprsubgg 13716 subrngsubg 13836 subrgsubg 13859 |
| Copyright terms: Public domain | W3C validator |