| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubg | Unicode version | ||
| Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg.b |
|
| Ref | Expression |
|---|---|
| issubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-subg 13621 |
. . 3
| |
| 2 | 1 | mptrcl 5685 |
. 2
|
| 3 | simp1 1000 |
. 2
| |
| 4 | fveq2 5599 |
. . . . . . . . 9
| |
| 5 | issubg.b |
. . . . . . . . 9
| |
| 6 | 4, 5 | eqtr4di 2258 |
. . . . . . . 8
|
| 7 | 6 | pweqd 3631 |
. . . . . . 7
|
| 8 | oveq1 5974 |
. . . . . . . 8
| |
| 9 | 8 | eleq1d 2276 |
. . . . . . 7
|
| 10 | 7, 9 | rabeqbidv 2771 |
. . . . . 6
|
| 11 | id 19 |
. . . . . 6
| |
| 12 | basfn 13005 |
. . . . . . . . . 10
| |
| 13 | elex 2788 |
. . . . . . . . . 10
| |
| 14 | funfvex 5616 |
. . . . . . . . . . 11
| |
| 15 | 14 | funfni 5395 |
. . . . . . . . . 10
|
| 16 | 12, 13, 15 | sylancr 414 |
. . . . . . . . 9
|
| 17 | 5, 16 | eqeltrid 2294 |
. . . . . . . 8
|
| 18 | 17 | pwexd 4241 |
. . . . . . 7
|
| 19 | rabexg 4203 |
. . . . . . 7
| |
| 20 | 18, 19 | syl 14 |
. . . . . 6
|
| 21 | 1, 10, 11, 20 | fvmptd3 5696 |
. . . . 5
|
| 22 | 21 | eleq2d 2277 |
. . . 4
|
| 23 | oveq2 5975 |
. . . . . . 7
| |
| 24 | 23 | eleq1d 2276 |
. . . . . 6
|
| 25 | 24 | elrab 2936 |
. . . . 5
|
| 26 | elpw2g 4216 |
. . . . . . 7
| |
| 27 | 17, 26 | syl 14 |
. . . . . 6
|
| 28 | 27 | anbi1d 465 |
. . . . 5
|
| 29 | 25, 28 | bitrid 192 |
. . . 4
|
| 30 | ibar 301 |
. . . 4
| |
| 31 | 22, 29, 30 | 3bitrd 214 |
. . 3
|
| 32 | 3anass 985 |
. . 3
| |
| 33 | 31, 32 | bitr4di 198 |
. 2
|
| 34 | 2, 3, 33 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-ov 5970 df-inn 9072 df-ndx 12950 df-slot 12951 df-base 12953 df-subg 13621 |
| This theorem is referenced by: subgss 13625 subgid 13626 subggrp 13628 subgbas 13629 subgrcl 13630 issubg2m 13640 resgrpisgrp 13646 subsubg 13648 opprsubgg 13961 subrngsubg 14081 subrgsubg 14104 |
| Copyright terms: Public domain | W3C validator |