ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg Unicode version

Theorem issubg 13379
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
issubg  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )

Proof of Theorem issubg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13376 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
21mptrcl 5647 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3 simp1 999 . 2  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp )  ->  G  e.  Grp )
4 fveq2 5561 . . . . . . . . 9  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 issubg.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2247 . . . . . . . 8  |-  ( w  =  G  ->  ( Base `  w )  =  B )
76pweqd 3611 . . . . . . 7  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
8 oveq1 5932 . . . . . . . 8  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
98eleq1d 2265 . . . . . . 7  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
107, 9rabeqbidv 2758 . . . . . 6  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P B  |  ( Gs  s )  e.  Grp } )
11 id 19 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Grp )
12 basfn 12761 . . . . . . . . . 10  |-  Base  Fn  _V
13 elex 2774 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  _V )
14 funfvex 5578 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1514funfni 5361 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1612, 13, 15sylancr 414 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
175, 16eqeltrid 2283 . . . . . . . 8  |-  ( G  e.  Grp  ->  B  e.  _V )
1817pwexd 4215 . . . . . . 7  |-  ( G  e.  Grp  ->  ~P B  e.  _V )
19 rabexg 4177 . . . . . . 7  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  e.  _V )
2018, 19syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp }  e.  _V )
211, 10, 11, 20fvmptd3 5658 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P B  |  ( Gs  s )  e.  Grp } )
2221eleq2d 2266 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  S  e.  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp } ) )
23 oveq2 5933 . . . . . . 7  |-  ( s  =  S  ->  ( Gs  s )  =  ( Gs  S ) )
2423eleq1d 2265 . . . . . 6  |-  ( s  =  S  ->  (
( Gs  s )  e. 
Grp 
<->  ( Gs  S )  e.  Grp ) )
2524elrab 2920 . . . . 5  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) )
26 elpw2g 4190 . . . . . . 7  |-  ( B  e.  _V  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2717, 26syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2827anbi1d 465 . . . . 5  |-  ( G  e.  Grp  ->  (
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp )  <->  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) )
2925, 28bitrid 192 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
30 ibar 301 . . . 4  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) ) )
3122, 29, 303bitrd 214 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) ) )
32 3anass 984 . . 3  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
3331, 32bitr4di 198 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
342, 3, 33pm5.21nii 705 1  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763    C_ wss 3157   ~Pcpw 3606    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   Grpcgrp 13202  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-inn 9008  df-ndx 12706  df-slot 12707  df-base 12709  df-subg 13376
This theorem is referenced by:  subgss  13380  subgid  13381  subggrp  13383  subgbas  13384  subgrcl  13385  issubg2m  13395  resgrpisgrp  13401  subsubg  13403  opprsubgg  13716  subrngsubg  13836  subrgsubg  13859
  Copyright terms: Public domain W3C validator