ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg Unicode version

Theorem issubg 13243
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
issubg  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )

Proof of Theorem issubg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13240 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
21mptrcl 5640 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3 simp1 999 . 2  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp )  ->  G  e.  Grp )
4 fveq2 5554 . . . . . . . . 9  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 issubg.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2244 . . . . . . . 8  |-  ( w  =  G  ->  ( Base `  w )  =  B )
76pweqd 3606 . . . . . . 7  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
8 oveq1 5925 . . . . . . . 8  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
98eleq1d 2262 . . . . . . 7  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
107, 9rabeqbidv 2755 . . . . . 6  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P B  |  ( Gs  s )  e.  Grp } )
11 id 19 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Grp )
12 basfn 12676 . . . . . . . . . 10  |-  Base  Fn  _V
13 elex 2771 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  _V )
14 funfvex 5571 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1514funfni 5354 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1612, 13, 15sylancr 414 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
175, 16eqeltrid 2280 . . . . . . . 8  |-  ( G  e.  Grp  ->  B  e.  _V )
1817pwexd 4210 . . . . . . 7  |-  ( G  e.  Grp  ->  ~P B  e.  _V )
19 rabexg 4172 . . . . . . 7  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  e.  _V )
2018, 19syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp }  e.  _V )
211, 10, 11, 20fvmptd3 5651 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P B  |  ( Gs  s )  e.  Grp } )
2221eleq2d 2263 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  S  e.  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp } ) )
23 oveq2 5926 . . . . . . 7  |-  ( s  =  S  ->  ( Gs  s )  =  ( Gs  S ) )
2423eleq1d 2262 . . . . . 6  |-  ( s  =  S  ->  (
( Gs  s )  e. 
Grp 
<->  ( Gs  S )  e.  Grp ) )
2524elrab 2916 . . . . 5  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) )
26 elpw2g 4185 . . . . . . 7  |-  ( B  e.  _V  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2717, 26syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2827anbi1d 465 . . . . 5  |-  ( G  e.  Grp  ->  (
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp )  <->  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) )
2925, 28bitrid 192 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
30 ibar 301 . . . 4  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) ) )
3122, 29, 303bitrd 214 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) ) )
32 3anass 984 . . 3  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
3331, 32bitr4di 198 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
342, 3, 33pm5.21nii 705 1  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-subg 13240
This theorem is referenced by:  subgss  13244  subgid  13245  subggrp  13247  subgbas  13248  subgrcl  13249  issubg2m  13259  resgrpisgrp  13265  subsubg  13267  opprsubgg  13580  subrngsubg  13700  subrgsubg  13723
  Copyright terms: Public domain W3C validator