ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg Unicode version

Theorem issubg 13710
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
issubg  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )

Proof of Theorem issubg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13707 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
21mptrcl 5717 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3 simp1 1021 . 2  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp )  ->  G  e.  Grp )
4 fveq2 5627 . . . . . . . . 9  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 issubg.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2280 . . . . . . . 8  |-  ( w  =  G  ->  ( Base `  w )  =  B )
76pweqd 3654 . . . . . . 7  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
8 oveq1 6008 . . . . . . . 8  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
98eleq1d 2298 . . . . . . 7  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
107, 9rabeqbidv 2794 . . . . . 6  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P B  |  ( Gs  s )  e.  Grp } )
11 id 19 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Grp )
12 basfn 13091 . . . . . . . . . 10  |-  Base  Fn  _V
13 elex 2811 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  _V )
14 funfvex 5644 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1514funfni 5423 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1612, 13, 15sylancr 414 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
175, 16eqeltrid 2316 . . . . . . . 8  |-  ( G  e.  Grp  ->  B  e.  _V )
1817pwexd 4265 . . . . . . 7  |-  ( G  e.  Grp  ->  ~P B  e.  _V )
19 rabexg 4227 . . . . . . 7  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  e.  _V )
2018, 19syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp }  e.  _V )
211, 10, 11, 20fvmptd3 5728 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P B  |  ( Gs  s )  e.  Grp } )
2221eleq2d 2299 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  S  e.  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp } ) )
23 oveq2 6009 . . . . . . 7  |-  ( s  =  S  ->  ( Gs  s )  =  ( Gs  S ) )
2423eleq1d 2298 . . . . . 6  |-  ( s  =  S  ->  (
( Gs  s )  e. 
Grp 
<->  ( Gs  S )  e.  Grp ) )
2524elrab 2959 . . . . 5  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) )
26 elpw2g 4240 . . . . . . 7  |-  ( B  e.  _V  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2717, 26syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2827anbi1d 465 . . . . 5  |-  ( G  e.  Grp  ->  (
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp )  <->  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) )
2925, 28bitrid 192 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
30 ibar 301 . . . 4  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) ) )
3122, 29, 303bitrd 214 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) ) )
32 3anass 1006 . . 3  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
3331, 32bitr4di 198 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
342, 3, 33pm5.21nii 709 1  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   Grpcgrp 13533  SubGrpcsubg 13704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-ndx 13035  df-slot 13036  df-base 13038  df-subg 13707
This theorem is referenced by:  subgss  13711  subgid  13712  subggrp  13714  subgbas  13715  subgrcl  13716  issubg2m  13726  resgrpisgrp  13732  subsubg  13734  opprsubgg  14047  subrngsubg  14168  subrgsubg  14191
  Copyright terms: Public domain W3C validator