ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg Unicode version

Theorem issubg 13038
Description: The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
issubg.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
issubg  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )

Proof of Theorem issubg
Dummy variables  w  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-subg 13035 . . 3  |- SubGrp  =  ( w  e.  Grp  |->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e. 
Grp } )
21mptrcl 5600 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3 simp1 997 . 2  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp )  ->  G  e.  Grp )
4 fveq2 5517 . . . . . . . . 9  |-  ( w  =  G  ->  ( Base `  w )  =  ( Base `  G
) )
5 issubg.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
64, 5eqtr4di 2228 . . . . . . . 8  |-  ( w  =  G  ->  ( Base `  w )  =  B )
76pweqd 3582 . . . . . . 7  |-  ( w  =  G  ->  ~P ( Base `  w )  =  ~P B )
8 oveq1 5884 . . . . . . . 8  |-  ( w  =  G  ->  (
ws  s )  =  ( Gs  s ) )
98eleq1d 2246 . . . . . . 7  |-  ( w  =  G  ->  (
( ws  s )  e. 
Grp 
<->  ( Gs  s )  e. 
Grp ) )
107, 9rabeqbidv 2734 . . . . . 6  |-  ( w  =  G  ->  { s  e.  ~P ( Base `  w )  |  ( ws  s )  e.  Grp }  =  { s  e. 
~P B  |  ( Gs  s )  e.  Grp } )
11 id 19 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Grp )
12 basfn 12522 . . . . . . . . . 10  |-  Base  Fn  _V
13 elex 2750 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e.  _V )
14 funfvex 5534 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1514funfni 5318 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1612, 13, 15sylancr 414 . . . . . . . . 9  |-  ( G  e.  Grp  ->  ( Base `  G )  e. 
_V )
175, 16eqeltrid 2264 . . . . . . . 8  |-  ( G  e.  Grp  ->  B  e.  _V )
1817pwexd 4183 . . . . . . 7  |-  ( G  e.  Grp  ->  ~P B  e.  _V )
19 rabexg 4148 . . . . . . 7  |-  ( ~P B  e.  _V  ->  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  e.  _V )
2018, 19syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp }  e.  _V )
211, 10, 11, 20fvmptd3 5611 . . . . 5  |-  ( G  e.  Grp  ->  (SubGrp `  G )  =  {
s  e.  ~P B  |  ( Gs  s )  e.  Grp } )
2221eleq2d 2247 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  S  e.  { s  e.  ~P B  | 
( Gs  s )  e. 
Grp } ) )
23 oveq2 5885 . . . . . . 7  |-  ( s  =  S  ->  ( Gs  s )  =  ( Gs  S ) )
2423eleq1d 2246 . . . . . 6  |-  ( s  =  S  ->  (
( Gs  s )  e. 
Grp 
<->  ( Gs  S )  e.  Grp ) )
2524elrab 2895 . . . . 5  |-  ( S  e.  { s  e. 
~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp ) )
26 elpw2g 4158 . . . . . . 7  |-  ( B  e.  _V  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2717, 26syl 14 . . . . . 6  |-  ( G  e.  Grp  ->  ( S  e.  ~P B  <->  S 
C_  B ) )
2827anbi1d 465 . . . . 5  |-  ( G  e.  Grp  ->  (
( S  e.  ~P B  /\  ( Gs  S )  e.  Grp )  <->  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) )
2925, 28bitrid 192 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  { s  e.  ~P B  |  ( Gs  s )  e.  Grp }  <-> 
( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
30 ibar 301 . . . 4  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) ) )
3122, 29, 303bitrd 214 . . 3  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp )
) ) )
32 3anass 982 . . 3  |-  ( ( G  e.  Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
3331, 32bitr4di 198 . 2  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) ) )
342, 3, 33pm5.21nii 704 1  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577    Fn wfn 5213   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   Grpcgrp 12882  SubGrpcsubg 13032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-subg 13035
This theorem is referenced by:  subgss  13039  subgid  13040  subggrp  13042  subgbas  13043  subgrcl  13044  issubg2m  13054  resgrpisgrp  13060  subsubg  13062  subrgsubg  13353
  Copyright terms: Public domain W3C validator