ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubg2m Unicode version

Theorem issubg2m 13525
Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
issubg2.b  |-  B  =  ( Base `  G
)
issubg2.p  |-  .+  =  ( +g  `  G )
issubg2.i  |-  I  =  ( invg `  G )
Assertion
Ref Expression
issubg2m  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) ) )
Distinct variable groups:    u,  .+ , x, y    u, B    u, G, x, y    u, I, x, y    u, S, x, y
Allowed substitution hints:    B( x, y)

Proof of Theorem issubg2m
Dummy variables  v  w  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubg2.b . . . 4  |-  B  =  ( Base `  G
)
21subgss 13510 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
3 eqid 2205 . . . . . . 7  |-  ( Gs  S )  =  ( Gs  S )
43subggrp 13513 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
5 eqid 2205 . . . . . . 7  |-  ( Base `  ( Gs  S ) )  =  ( Base `  ( Gs  S ) )
6 eqid 2205 . . . . . . 7  |-  ( 0g
`  ( Gs  S ) )  =  ( 0g
`  ( Gs  S ) )
75, 6grpidcl 13361 . . . . . 6  |-  ( ( Gs  S )  e.  Grp  ->  ( 0g `  ( Gs  S ) )  e.  ( Base `  ( Gs  S ) ) )
84, 7syl 14 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  ( Gs  S ) )  e.  ( Base `  ( Gs  S ) ) )
93subgbas 13514 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  ( Gs  S
) ) )
108, 9eleqtrrd 2285 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  ( Gs  S ) )  e.  S )
11 elex2 2788 . . . 4  |-  ( ( 0g `  ( Gs  S ) )  e.  S  ->  E. u  u  e.  S )
1210, 11syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  E. u  u  e.  S )
13 issubg2.p . . . . . . . 8  |-  .+  =  ( +g  `  G )
1413subgcl 13520 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
15143expa 1206 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  x  e.  S )  /\  y  e.  S )  ->  (
x  .+  y )  e.  S )
1615ralrimiva 2579 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S )  ->  A. y  e.  S  ( x  .+  y )  e.  S
)
17 issubg2.i . . . . . 6  |-  I  =  ( invg `  G )
1817subginvcl 13519 . . . . 5  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S )  ->  (
I `  x )  e.  S )
1916, 18jca 306 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S )  ->  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )
2019ralrimiva 2579 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )
212, 12, 203jca 1180 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )
22 eleq1w 2266 . . . . 5  |-  ( r  =  u  ->  (
r  e.  S  <->  u  e.  S ) )
2322cbvexv 1942 . . . 4  |-  ( E. r  r  e.  S  <->  E. u  u  e.  S
)
24233anbi2i 1194 . . 3  |-  ( ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )
25 simpl 109 . . . . 5  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  G  e.  Grp )
26 simpr1 1006 . . . . 5  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  S  C_  B
)
273a1i 9 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  -> 
( Gs  S )  =  ( Gs  S ) )
281a1i 9 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  B  =  ( Base `  G ) )
29 simpl 109 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  G  e.  Grp )
30 simpr 110 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  S  C_  B )
3127, 28, 29, 30ressbas2d 12900 . . . . . . 7  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  S  =  ( Base `  ( Gs  S ) ) )
32313ad2antr1 1165 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  S  =  (
Base `  ( Gs  S
) ) )
3313a1i 9 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  .+  =  ( +g  `  G ) )
34 basfn 12890 . . . . . . . . . . 11  |-  Base  Fn  _V
3529elexd 2785 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  G  e.  _V )
36 funfvex 5593 . . . . . . . . . . . 12  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
3736funfni 5376 . . . . . . . . . . 11  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
3834, 35, 37sylancr 414 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  S  C_  B )  -> 
( Base `  G )  e.  _V )
391, 38eqeltrid 2292 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  B  e.  _V )
4039, 30ssexd 4184 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  S  e.  _V )
4127, 33, 40, 29ressplusgd 12961 . . . . . . 7  |-  ( ( G  e.  Grp  /\  S  C_  B )  ->  .+  =  ( +g  `  ( Gs  S ) ) )
42413ad2antr1 1165 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  .+  =  ( +g  `  ( Gs  S ) ) )
43 simpr3 1008 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )
44 simpl 109 . . . . . . . . . 10  |-  ( ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S )  ->  A. y  e.  S  ( x  .+  y )  e.  S
)
4544ralimi 2569 . . . . . . . . 9  |-  ( A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S )  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)
4643, 45syl 14 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S )
47 oveq1 5951 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  .+  y )  =  ( u  .+  y ) )
4847eleq1d 2274 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x  .+  y
)  e.  S  <->  ( u  .+  y )  e.  S
) )
49 oveq2 5952 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  .+  y )  =  ( u  .+  v ) )
5049eleq1d 2274 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u  .+  y
)  e.  S  <->  ( u  .+  v )  e.  S
) )
5148, 50rspc2v 2890 . . . . . . . 8  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S  ->  ( u  .+  v
)  e.  S ) )
5246, 51syl5com 29 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( ( u  e.  S  /\  v  e.  S )  ->  (
u  .+  v )  e.  S ) )
53523impib 1204 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S  /\  v  e.  S
)  ->  ( u  .+  v )  e.  S
)
5426sseld 3192 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( u  e.  S  ->  u  e.  B ) )
5526sseld 3192 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( v  e.  S  ->  v  e.  B ) )
5626sseld 3192 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( w  e.  S  ->  w  e.  B ) )
5754, 55, 563anim123d 1332 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( ( u  e.  S  /\  v  e.  S  /\  w  e.  S )  ->  (
u  e.  B  /\  v  e.  B  /\  w  e.  B )
) )
5857imp 124 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )
591, 13grpass 13341 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B
) )  ->  (
( u  .+  v
)  .+  w )  =  ( u  .+  ( v  .+  w
) ) )
6059adantlr 477 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  ( u  e.  B  /\  v  e.  B  /\  w  e.  B ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
6158, 60syldan 282 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  ( u  e.  S  /\  v  e.  S  /\  w  e.  S ) )  -> 
( ( u  .+  v )  .+  w
)  =  ( u 
.+  ( v  .+  w ) ) )
62 simpr2 1007 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  E. r  r  e.  S )
6362, 23sylib 122 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  E. u  u  e.  S )
6426sselda 3193 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  u  e.  B )
65 eqid 2205 . . . . . . . . . . 11  |-  ( 0g
`  G )  =  ( 0g `  G
)
661, 13, 65, 17grplinv 13382 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  ( ( I `  u )  .+  u
)  =  ( 0g
`  G ) )
6766adantlr 477 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  B
)  ->  ( (
I `  u )  .+  u )  =  ( 0g `  G ) )
6864, 67syldan 282 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  ( (
I `  u )  .+  u )  =  ( 0g `  G ) )
69 simpr 110 . . . . . . . . . . . 12  |-  ( ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S )  ->  (
I `  x )  e.  S )
7069ralimi 2569 . . . . . . . . . . 11  |-  ( A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S )  ->  A. x  e.  S  ( I `  x )  e.  S
)
7143, 70syl 14 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  A. x  e.  S  ( I `  x
)  e.  S )
72 fveq2 5576 . . . . . . . . . . . 12  |-  ( x  =  u  ->  (
I `  x )  =  ( I `  u ) )
7372eleq1d 2274 . . . . . . . . . . 11  |-  ( x  =  u  ->  (
( I `  x
)  e.  S  <->  ( I `  u )  e.  S
) )
7473rspccva 2876 . . . . . . . . . 10  |-  ( ( A. x  e.  S  ( I `  x
)  e.  S  /\  u  e.  S )  ->  ( I `  u
)  e.  S )
7571, 74sylan 283 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  ( I `  u )  e.  S
)
76 simpr 110 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  u  e.  S )
7746adantr 276 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)
78 ovrspc2v 5970 . . . . . . . . 9  |-  ( ( ( ( I `  u )  e.  S  /\  u  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( (
I `  u )  .+  u )  e.  S
)
7975, 76, 77, 78syl21anc 1249 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  ( (
I `  u )  .+  u )  e.  S
)
8068, 79eqeltrrd 2283 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  ( 0g `  G )  e.  S
)
8163, 80exlimddv 1922 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( 0g `  G )  e.  S
)
821, 13, 65grplid 13363 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  u  e.  B )  ->  ( ( 0g `  G )  .+  u
)  =  u )
8382adantlr 477 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  B
)  ->  ( ( 0g `  G )  .+  u )  =  u )
8464, 83syldan 282 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  /\  u  e.  S
)  ->  ( ( 0g `  G )  .+  u )  =  u )
8532, 42, 53, 61, 81, 84, 75, 68isgrpd 13355 . . . . 5  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  ( Gs  S )  e.  Grp )
861issubg 13509 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  S  C_  B  /\  ( Gs  S )  e.  Grp ) )
8725, 26, 85, 86syl3anbrc 1184 . . . 4  |-  ( ( G  e.  Grp  /\  ( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) )  ->  S  e.  (SubGrp `  G ) )
8887ex 115 . . 3  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  E. r  r  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )  ->  S  e.  (SubGrp `  G
) ) )
8924, 88biimtrrid 153 . 2  |-  ( G  e.  Grp  ->  (
( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  (
x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) )  ->  S  e.  (SubGrp `  G
) ) )
9021, 89impbid2 143 1  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. u  u  e.  S  /\  A. x  e.  S  ( A. y  e.  S  ( x  .+  y )  e.  S  /\  (
I `  x )  e.  S ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1515    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166    Fn wfn 5266   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   0gc0g 13088   Grpcgrp 13332   invgcminusg 13333  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-minusg 13336  df-subg 13506
This theorem is referenced by:  issubgrpd2  13526  issubg3  13528  issubg4m  13529  grpissubg  13530  subgintm  13534  nmzsubg  13546  ghmrn  13593  ghmpreima  13602  subrgugrp  14002  lsssubg  14139  lidlsubg  14248  cnsubglem  14341  mplsubgfi  14463
  Copyright terms: Public domain W3C validator