| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubg2m | Unicode version | ||
| Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg2.b |
|
| issubg2.p |
|
| issubg2.i |
|
| Ref | Expression |
|---|---|
| issubg2m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg2.b |
. . . 4
| |
| 2 | 1 | subgss 13711 |
. . 3
|
| 3 | eqid 2229 |
. . . . . . 7
| |
| 4 | 3 | subggrp 13714 |
. . . . . 6
|
| 5 | eqid 2229 |
. . . . . . 7
| |
| 6 | eqid 2229 |
. . . . . . 7
| |
| 7 | 5, 6 | grpidcl 13562 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | 3 | subgbas 13715 |
. . . . 5
|
| 10 | 8, 9 | eleqtrrd 2309 |
. . . 4
|
| 11 | elex2 2816 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | issubg2.p |
. . . . . . . 8
| |
| 14 | 13 | subgcl 13721 |
. . . . . . 7
|
| 15 | 14 | 3expa 1227 |
. . . . . 6
|
| 16 | 15 | ralrimiva 2603 |
. . . . 5
|
| 17 | issubg2.i |
. . . . . 6
| |
| 18 | 17 | subginvcl 13720 |
. . . . 5
|
| 19 | 16, 18 | jca 306 |
. . . 4
|
| 20 | 19 | ralrimiva 2603 |
. . 3
|
| 21 | 2, 12, 20 | 3jca 1201 |
. 2
|
| 22 | eleq1w 2290 |
. . . . 5
| |
| 23 | 22 | cbvexv 1965 |
. . . 4
|
| 24 | 23 | 3anbi2i 1215 |
. . 3
|
| 25 | simpl 109 |
. . . . 5
| |
| 26 | simpr1 1027 |
. . . . 5
| |
| 27 | 3 | a1i 9 |
. . . . . . . 8
|
| 28 | 1 | a1i 9 |
. . . . . . . 8
|
| 29 | simpl 109 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . 8
| |
| 31 | 27, 28, 29, 30 | ressbas2d 13101 |
. . . . . . 7
|
| 32 | 31 | 3ad2antr1 1186 |
. . . . . 6
|
| 33 | 13 | a1i 9 |
. . . . . . . 8
|
| 34 | basfn 13091 |
. . . . . . . . . . 11
| |
| 35 | 29 | elexd 2813 |
. . . . . . . . . . 11
|
| 36 | funfvex 5644 |
. . . . . . . . . . . 12
| |
| 37 | 36 | funfni 5423 |
. . . . . . . . . . 11
|
| 38 | 34, 35, 37 | sylancr 414 |
. . . . . . . . . 10
|
| 39 | 1, 38 | eqeltrid 2316 |
. . . . . . . . 9
|
| 40 | 39, 30 | ssexd 4224 |
. . . . . . . 8
|
| 41 | 27, 33, 40, 29 | ressplusgd 13162 |
. . . . . . 7
|
| 42 | 41 | 3ad2antr1 1186 |
. . . . . 6
|
| 43 | simpr3 1029 |
. . . . . . . . 9
| |
| 44 | simpl 109 |
. . . . . . . . . 10
| |
| 45 | 44 | ralimi 2593 |
. . . . . . . . 9
|
| 46 | 43, 45 | syl 14 |
. . . . . . . 8
|
| 47 | oveq1 6008 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2298 |
. . . . . . . . 9
|
| 49 | oveq2 6009 |
. . . . . . . . . 10
| |
| 50 | 49 | eleq1d 2298 |
. . . . . . . . 9
|
| 51 | 48, 50 | rspc2v 2920 |
. . . . . . . 8
|
| 52 | 46, 51 | syl5com 29 |
. . . . . . 7
|
| 53 | 52 | 3impib 1225 |
. . . . . 6
|
| 54 | 26 | sseld 3223 |
. . . . . . . . 9
|
| 55 | 26 | sseld 3223 |
. . . . . . . . 9
|
| 56 | 26 | sseld 3223 |
. . . . . . . . 9
|
| 57 | 54, 55, 56 | 3anim123d 1353 |
. . . . . . . 8
|
| 58 | 57 | imp 124 |
. . . . . . 7
|
| 59 | 1, 13 | grpass 13542 |
. . . . . . . 8
|
| 60 | 59 | adantlr 477 |
. . . . . . 7
|
| 61 | 58, 60 | syldan 282 |
. . . . . 6
|
| 62 | simpr2 1028 |
. . . . . . . 8
| |
| 63 | 62, 23 | sylib 122 |
. . . . . . 7
|
| 64 | 26 | sselda 3224 |
. . . . . . . . 9
|
| 65 | eqid 2229 |
. . . . . . . . . . 11
| |
| 66 | 1, 13, 65, 17 | grplinv 13583 |
. . . . . . . . . 10
|
| 67 | 66 | adantlr 477 |
. . . . . . . . 9
|
| 68 | 64, 67 | syldan 282 |
. . . . . . . 8
|
| 69 | simpr 110 |
. . . . . . . . . . . 12
| |
| 70 | 69 | ralimi 2593 |
. . . . . . . . . . 11
|
| 71 | 43, 70 | syl 14 |
. . . . . . . . . 10
|
| 72 | fveq2 5627 |
. . . . . . . . . . . 12
| |
| 73 | 72 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 74 | 73 | rspccva 2906 |
. . . . . . . . . 10
|
| 75 | 71, 74 | sylan 283 |
. . . . . . . . 9
|
| 76 | simpr 110 |
. . . . . . . . 9
| |
| 77 | 46 | adantr 276 |
. . . . . . . . 9
|
| 78 | ovrspc2v 6027 |
. . . . . . . . 9
| |
| 79 | 75, 76, 77, 78 | syl21anc 1270 |
. . . . . . . 8
|
| 80 | 68, 79 | eqeltrrd 2307 |
. . . . . . 7
|
| 81 | 63, 80 | exlimddv 1945 |
. . . . . 6
|
| 82 | 1, 13, 65 | grplid 13564 |
. . . . . . . 8
|
| 83 | 82 | adantlr 477 |
. . . . . . 7
|
| 84 | 64, 83 | syldan 282 |
. . . . . 6
|
| 85 | 32, 42, 53, 61, 81, 84, 75, 68 | isgrpd 13556 |
. . . . 5
|
| 86 | 1 | issubg 13710 |
. . . . 5
|
| 87 | 25, 26, 85, 86 | syl3anbrc 1205 |
. . . 4
|
| 88 | 87 | ex 115 |
. . 3
|
| 89 | 24, 88 | biimtrrid 153 |
. 2
|
| 90 | 21, 89 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-subg 13707 |
| This theorem is referenced by: issubgrpd2 13727 issubg3 13729 issubg4m 13730 grpissubg 13731 subgintm 13735 nmzsubg 13747 ghmrn 13794 ghmpreima 13803 subrgugrp 14204 lsssubg 14341 lidlsubg 14450 cnsubglem 14543 mplsubgfi 14665 |
| Copyright terms: Public domain | W3C validator |