| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > issubg2m | Unicode version | ||
| Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| issubg2.b | 
 | 
| issubg2.p | 
 | 
| issubg2.i | 
 | 
| Ref | Expression | 
|---|---|
| issubg2m | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issubg2.b | 
. . . 4
 | |
| 2 | 1 | subgss 13304 | 
. . 3
 | 
| 3 | eqid 2196 | 
. . . . . . 7
 | |
| 4 | 3 | subggrp 13307 | 
. . . . . 6
 | 
| 5 | eqid 2196 | 
. . . . . . 7
 | |
| 6 | eqid 2196 | 
. . . . . . 7
 | |
| 7 | 5, 6 | grpidcl 13161 | 
. . . . . 6
 | 
| 8 | 4, 7 | syl 14 | 
. . . . 5
 | 
| 9 | 3 | subgbas 13308 | 
. . . . 5
 | 
| 10 | 8, 9 | eleqtrrd 2276 | 
. . . 4
 | 
| 11 | elex2 2779 | 
. . . 4
 | |
| 12 | 10, 11 | syl 14 | 
. . 3
 | 
| 13 | issubg2.p | 
. . . . . . . 8
 | |
| 14 | 13 | subgcl 13314 | 
. . . . . . 7
 | 
| 15 | 14 | 3expa 1205 | 
. . . . . 6
 | 
| 16 | 15 | ralrimiva 2570 | 
. . . . 5
 | 
| 17 | issubg2.i | 
. . . . . 6
 | |
| 18 | 17 | subginvcl 13313 | 
. . . . 5
 | 
| 19 | 16, 18 | jca 306 | 
. . . 4
 | 
| 20 | 19 | ralrimiva 2570 | 
. . 3
 | 
| 21 | 2, 12, 20 | 3jca 1179 | 
. 2
 | 
| 22 | eleq1w 2257 | 
. . . . 5
 | |
| 23 | 22 | cbvexv 1933 | 
. . . 4
 | 
| 24 | 23 | 3anbi2i 1193 | 
. . 3
 | 
| 25 | simpl 109 | 
. . . . 5
 | |
| 26 | simpr1 1005 | 
. . . . 5
 | |
| 27 | 3 | a1i 9 | 
. . . . . . . 8
 | 
| 28 | 1 | a1i 9 | 
. . . . . . . 8
 | 
| 29 | simpl 109 | 
. . . . . . . 8
 | |
| 30 | simpr 110 | 
. . . . . . . 8
 | |
| 31 | 27, 28, 29, 30 | ressbas2d 12746 | 
. . . . . . 7
 | 
| 32 | 31 | 3ad2antr1 1164 | 
. . . . . 6
 | 
| 33 | 13 | a1i 9 | 
. . . . . . . 8
 | 
| 34 | basfn 12736 | 
. . . . . . . . . . 11
 | |
| 35 | 29 | elexd 2776 | 
. . . . . . . . . . 11
 | 
| 36 | funfvex 5575 | 
. . . . . . . . . . . 12
 | |
| 37 | 36 | funfni 5358 | 
. . . . . . . . . . 11
 | 
| 38 | 34, 35, 37 | sylancr 414 | 
. . . . . . . . . 10
 | 
| 39 | 1, 38 | eqeltrid 2283 | 
. . . . . . . . 9
 | 
| 40 | 39, 30 | ssexd 4173 | 
. . . . . . . 8
 | 
| 41 | 27, 33, 40, 29 | ressplusgd 12806 | 
. . . . . . 7
 | 
| 42 | 41 | 3ad2antr1 1164 | 
. . . . . 6
 | 
| 43 | simpr3 1007 | 
. . . . . . . . 9
 | |
| 44 | simpl 109 | 
. . . . . . . . . 10
 | |
| 45 | 44 | ralimi 2560 | 
. . . . . . . . 9
 | 
| 46 | 43, 45 | syl 14 | 
. . . . . . . 8
 | 
| 47 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 48 | 47 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 49 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 50 | 49 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 51 | 48, 50 | rspc2v 2881 | 
. . . . . . . 8
 | 
| 52 | 46, 51 | syl5com 29 | 
. . . . . . 7
 | 
| 53 | 52 | 3impib 1203 | 
. . . . . 6
 | 
| 54 | 26 | sseld 3182 | 
. . . . . . . . 9
 | 
| 55 | 26 | sseld 3182 | 
. . . . . . . . 9
 | 
| 56 | 26 | sseld 3182 | 
. . . . . . . . 9
 | 
| 57 | 54, 55, 56 | 3anim123d 1330 | 
. . . . . . . 8
 | 
| 58 | 57 | imp 124 | 
. . . . . . 7
 | 
| 59 | 1, 13 | grpass 13141 | 
. . . . . . . 8
 | 
| 60 | 59 | adantlr 477 | 
. . . . . . 7
 | 
| 61 | 58, 60 | syldan 282 | 
. . . . . 6
 | 
| 62 | simpr2 1006 | 
. . . . . . . 8
 | |
| 63 | 62, 23 | sylib 122 | 
. . . . . . 7
 | 
| 64 | 26 | sselda 3183 | 
. . . . . . . . 9
 | 
| 65 | eqid 2196 | 
. . . . . . . . . . 11
 | |
| 66 | 1, 13, 65, 17 | grplinv 13182 | 
. . . . . . . . . 10
 | 
| 67 | 66 | adantlr 477 | 
. . . . . . . . 9
 | 
| 68 | 64, 67 | syldan 282 | 
. . . . . . . 8
 | 
| 69 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 70 | 69 | ralimi 2560 | 
. . . . . . . . . . 11
 | 
| 71 | 43, 70 | syl 14 | 
. . . . . . . . . 10
 | 
| 72 | fveq2 5558 | 
. . . . . . . . . . . 12
 | |
| 73 | 72 | eleq1d 2265 | 
. . . . . . . . . . 11
 | 
| 74 | 73 | rspccva 2867 | 
. . . . . . . . . 10
 | 
| 75 | 71, 74 | sylan 283 | 
. . . . . . . . 9
 | 
| 76 | simpr 110 | 
. . . . . . . . 9
 | |
| 77 | 46 | adantr 276 | 
. . . . . . . . 9
 | 
| 78 | ovrspc2v 5948 | 
. . . . . . . . 9
 | |
| 79 | 75, 76, 77, 78 | syl21anc 1248 | 
. . . . . . . 8
 | 
| 80 | 68, 79 | eqeltrrd 2274 | 
. . . . . . 7
 | 
| 81 | 63, 80 | exlimddv 1913 | 
. . . . . 6
 | 
| 82 | 1, 13, 65 | grplid 13163 | 
. . . . . . . 8
 | 
| 83 | 82 | adantlr 477 | 
. . . . . . 7
 | 
| 84 | 64, 83 | syldan 282 | 
. . . . . 6
 | 
| 85 | 32, 42, 53, 61, 81, 84, 75, 68 | isgrpd 13155 | 
. . . . 5
 | 
| 86 | 1 | issubg 13303 | 
. . . . 5
 | 
| 87 | 25, 26, 85, 86 | syl3anbrc 1183 | 
. . . 4
 | 
| 88 | 87 | ex 115 | 
. . 3
 | 
| 89 | 24, 88 | biimtrrid 153 | 
. 2
 | 
| 90 | 21, 89 | impbid2 143 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 | 
| This theorem is referenced by: issubgrpd2 13320 issubg3 13322 issubg4m 13323 grpissubg 13324 subgintm 13328 nmzsubg 13340 ghmrn 13387 ghmpreima 13396 subrgugrp 13796 lsssubg 13933 lidlsubg 14042 cnsubglem 14135 | 
| Copyright terms: Public domain | W3C validator |