| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubg2m | Unicode version | ||
| Description: Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubg2.b |
|
| issubg2.p |
|
| issubg2.i |
|
| Ref | Expression |
|---|---|
| issubg2m |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubg2.b |
. . . 4
| |
| 2 | 1 | subgss 13625 |
. . 3
|
| 3 | eqid 2207 |
. . . . . . 7
| |
| 4 | 3 | subggrp 13628 |
. . . . . 6
|
| 5 | eqid 2207 |
. . . . . . 7
| |
| 6 | eqid 2207 |
. . . . . . 7
| |
| 7 | 5, 6 | grpidcl 13476 |
. . . . . 6
|
| 8 | 4, 7 | syl 14 |
. . . . 5
|
| 9 | 3 | subgbas 13629 |
. . . . 5
|
| 10 | 8, 9 | eleqtrrd 2287 |
. . . 4
|
| 11 | elex2 2793 |
. . . 4
| |
| 12 | 10, 11 | syl 14 |
. . 3
|
| 13 | issubg2.p |
. . . . . . . 8
| |
| 14 | 13 | subgcl 13635 |
. . . . . . 7
|
| 15 | 14 | 3expa 1206 |
. . . . . 6
|
| 16 | 15 | ralrimiva 2581 |
. . . . 5
|
| 17 | issubg2.i |
. . . . . 6
| |
| 18 | 17 | subginvcl 13634 |
. . . . 5
|
| 19 | 16, 18 | jca 306 |
. . . 4
|
| 20 | 19 | ralrimiva 2581 |
. . 3
|
| 21 | 2, 12, 20 | 3jca 1180 |
. 2
|
| 22 | eleq1w 2268 |
. . . . 5
| |
| 23 | 22 | cbvexv 1943 |
. . . 4
|
| 24 | 23 | 3anbi2i 1194 |
. . 3
|
| 25 | simpl 109 |
. . . . 5
| |
| 26 | simpr1 1006 |
. . . . 5
| |
| 27 | 3 | a1i 9 |
. . . . . . . 8
|
| 28 | 1 | a1i 9 |
. . . . . . . 8
|
| 29 | simpl 109 |
. . . . . . . 8
| |
| 30 | simpr 110 |
. . . . . . . 8
| |
| 31 | 27, 28, 29, 30 | ressbas2d 13015 |
. . . . . . 7
|
| 32 | 31 | 3ad2antr1 1165 |
. . . . . 6
|
| 33 | 13 | a1i 9 |
. . . . . . . 8
|
| 34 | basfn 13005 |
. . . . . . . . . . 11
| |
| 35 | 29 | elexd 2790 |
. . . . . . . . . . 11
|
| 36 | funfvex 5616 |
. . . . . . . . . . . 12
| |
| 37 | 36 | funfni 5395 |
. . . . . . . . . . 11
|
| 38 | 34, 35, 37 | sylancr 414 |
. . . . . . . . . 10
|
| 39 | 1, 38 | eqeltrid 2294 |
. . . . . . . . 9
|
| 40 | 39, 30 | ssexd 4200 |
. . . . . . . 8
|
| 41 | 27, 33, 40, 29 | ressplusgd 13076 |
. . . . . . 7
|
| 42 | 41 | 3ad2antr1 1165 |
. . . . . 6
|
| 43 | simpr3 1008 |
. . . . . . . . 9
| |
| 44 | simpl 109 |
. . . . . . . . . 10
| |
| 45 | 44 | ralimi 2571 |
. . . . . . . . 9
|
| 46 | 43, 45 | syl 14 |
. . . . . . . 8
|
| 47 | oveq1 5974 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2276 |
. . . . . . . . 9
|
| 49 | oveq2 5975 |
. . . . . . . . . 10
| |
| 50 | 49 | eleq1d 2276 |
. . . . . . . . 9
|
| 51 | 48, 50 | rspc2v 2897 |
. . . . . . . 8
|
| 52 | 46, 51 | syl5com 29 |
. . . . . . 7
|
| 53 | 52 | 3impib 1204 |
. . . . . 6
|
| 54 | 26 | sseld 3200 |
. . . . . . . . 9
|
| 55 | 26 | sseld 3200 |
. . . . . . . . 9
|
| 56 | 26 | sseld 3200 |
. . . . . . . . 9
|
| 57 | 54, 55, 56 | 3anim123d 1332 |
. . . . . . . 8
|
| 58 | 57 | imp 124 |
. . . . . . 7
|
| 59 | 1, 13 | grpass 13456 |
. . . . . . . 8
|
| 60 | 59 | adantlr 477 |
. . . . . . 7
|
| 61 | 58, 60 | syldan 282 |
. . . . . 6
|
| 62 | simpr2 1007 |
. . . . . . . 8
| |
| 63 | 62, 23 | sylib 122 |
. . . . . . 7
|
| 64 | 26 | sselda 3201 |
. . . . . . . . 9
|
| 65 | eqid 2207 |
. . . . . . . . . . 11
| |
| 66 | 1, 13, 65, 17 | grplinv 13497 |
. . . . . . . . . 10
|
| 67 | 66 | adantlr 477 |
. . . . . . . . 9
|
| 68 | 64, 67 | syldan 282 |
. . . . . . . 8
|
| 69 | simpr 110 |
. . . . . . . . . . . 12
| |
| 70 | 69 | ralimi 2571 |
. . . . . . . . . . 11
|
| 71 | 43, 70 | syl 14 |
. . . . . . . . . 10
|
| 72 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 73 | 72 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 74 | 73 | rspccva 2883 |
. . . . . . . . . 10
|
| 75 | 71, 74 | sylan 283 |
. . . . . . . . 9
|
| 76 | simpr 110 |
. . . . . . . . 9
| |
| 77 | 46 | adantr 276 |
. . . . . . . . 9
|
| 78 | ovrspc2v 5993 |
. . . . . . . . 9
| |
| 79 | 75, 76, 77, 78 | syl21anc 1249 |
. . . . . . . 8
|
| 80 | 68, 79 | eqeltrrd 2285 |
. . . . . . 7
|
| 81 | 63, 80 | exlimddv 1923 |
. . . . . 6
|
| 82 | 1, 13, 65 | grplid 13478 |
. . . . . . . 8
|
| 83 | 82 | adantlr 477 |
. . . . . . 7
|
| 84 | 64, 83 | syldan 282 |
. . . . . 6
|
| 85 | 32, 42, 53, 61, 81, 84, 75, 68 | isgrpd 13470 |
. . . . 5
|
| 86 | 1 | issubg 13624 |
. . . . 5
|
| 87 | 25, 26, 85, 86 | syl3anbrc 1184 |
. . . 4
|
| 88 | 87 | ex 115 |
. . 3
|
| 89 | 24, 88 | biimtrrid 153 |
. 2
|
| 90 | 21, 89 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 |
| This theorem is referenced by: issubgrpd2 13641 issubg3 13643 issubg4m 13644 grpissubg 13645 subgintm 13649 nmzsubg 13661 ghmrn 13708 ghmpreima 13717 subrgugrp 14117 lsssubg 14254 lidlsubg 14363 cnsubglem 14456 mplsubgfi 14578 |
| Copyright terms: Public domain | W3C validator |