ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgcl Unicode version

Theorem subgcl 13520
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subgcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
subgcl  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )

Proof of Theorem subgcl
StepHypRef Expression
1 eqid 2205 . . 3  |-  ( Base `  ( Gs  S ) )  =  ( Base `  ( Gs  S ) )
2 eqid 2205 . . 3  |-  ( +g  `  ( Gs  S ) )  =  ( +g  `  ( Gs  S ) )
3 eqid 2205 . . . . 5  |-  ( Gs  S )  =  ( Gs  S )
43subggrp 13513 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
543ad2ant1 1021 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( Gs  S )  e.  Grp )
6 simp2 1001 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  S )
73subgbas 13514 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  ( Gs  S
) ) )
873ad2ant1 1021 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  =  ( Base `  ( Gs  S ) ) )
96, 8eleqtrd 2284 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  ( Gs  S ) ) )
10 simp3 1002 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  S )
1110, 8eleqtrd 2284 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  ( Gs  S ) ) )
121, 2, 5, 9, 11grpcld 13346 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  ( Gs  S ) ) Y )  e.  ( Base `  ( Gs  S ) ) )
13 eqidd 2206 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  =  ( Gs  S ) )
14 subgcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
1514a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
16 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13515 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1813, 15, 16, 17ressplusgd 12961 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  S ) ) )
19183ad2ant1 1021 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  .+  =  ( +g  `  ( Gs  S ) ) )
2019oveqd 5961 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  =  ( X ( +g  `  ( Gs  S ) ) Y ) )
2112, 20, 83eltr4d 2289 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   ↾s cress 12833   +g cplusg 12909   Grpcgrp 13332  SubGrpcsubg 13503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-iress 12840  df-plusg 12922  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335  df-subg 13506
This theorem is referenced by:  subgsubcl  13521  subgmulgcl  13523  issubg2m  13525  subgintm  13534  ssnmz  13547  eqger  13560  eqgcpbl  13564  resghm  13596  ghmpreima  13602  subrngacl  13970  subrgacl  13994  islss4  14144  dflidl2rng  14243
  Copyright terms: Public domain W3C validator