ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgcl Unicode version

Theorem subgcl 13390
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subgcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
subgcl  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )

Proof of Theorem subgcl
StepHypRef Expression
1 eqid 2196 . . 3  |-  ( Base `  ( Gs  S ) )  =  ( Base `  ( Gs  S ) )
2 eqid 2196 . . 3  |-  ( +g  `  ( Gs  S ) )  =  ( +g  `  ( Gs  S ) )
3 eqid 2196 . . . . 5  |-  ( Gs  S )  =  ( Gs  S )
43subggrp 13383 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
543ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( Gs  S )  e.  Grp )
6 simp2 1000 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  S )
73subgbas 13384 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  ( Gs  S
) ) )
873ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  =  ( Base `  ( Gs  S ) ) )
96, 8eleqtrd 2275 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  ( Gs  S ) ) )
10 simp3 1001 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  S )
1110, 8eleqtrd 2275 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  ( Gs  S ) ) )
121, 2, 5, 9, 11grpcld 13216 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  ( Gs  S ) ) Y )  e.  ( Base `  ( Gs  S ) ) )
13 eqidd 2197 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  =  ( Gs  S ) )
14 subgcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
1514a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
16 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13385 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1813, 15, 16, 17ressplusgd 12831 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  S ) ) )
19183ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  .+  =  ( +g  `  ( Gs  S ) ) )
2019oveqd 5942 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  =  ( X ( +g  `  ( Gs  S ) ) Y ) )
2112, 20, 83eltr4d 2280 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   Grpcgrp 13202  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376
This theorem is referenced by:  subgsubcl  13391  subgmulgcl  13393  issubg2m  13395  subgintm  13404  ssnmz  13417  eqger  13430  eqgcpbl  13434  resghm  13466  ghmpreima  13472  subrngacl  13840  subrgacl  13864  islss4  14014  dflidl2rng  14113
  Copyright terms: Public domain W3C validator