ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgcl Unicode version

Theorem subgcl 13491
Description: A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subgcl.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
subgcl  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )

Proof of Theorem subgcl
StepHypRef Expression
1 eqid 2204 . . 3  |-  ( Base `  ( Gs  S ) )  =  ( Base `  ( Gs  S ) )
2 eqid 2204 . . 3  |-  ( +g  `  ( Gs  S ) )  =  ( +g  `  ( Gs  S ) )
3 eqid 2204 . . . . 5  |-  ( Gs  S )  =  ( Gs  S )
43subggrp 13484 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  e.  Grp )
543ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( Gs  S )  e.  Grp )
6 simp2 1000 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  S )
73subgbas 13485 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  ( Gs  S
) ) )
873ad2ant1 1020 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  S  =  ( Base `  ( Gs  S ) ) )
96, 8eleqtrd 2283 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  X  e.  ( Base `  ( Gs  S ) ) )
10 simp3 1001 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  S )
1110, 8eleqtrd 2283 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  Y  e.  ( Base `  ( Gs  S ) ) )
121, 2, 5, 9, 11grpcld 13317 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X ( +g  `  ( Gs  S ) ) Y )  e.  ( Base `  ( Gs  S ) ) )
13 eqidd 2205 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( Gs  S
)  =  ( Gs  S ) )
14 subgcl.p . . . . . 6  |-  .+  =  ( +g  `  G )
1514a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
16 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
17 subgrcl 13486 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1813, 15, 16, 17ressplusgd 12932 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  ( Gs  S ) ) )
19183ad2ant1 1020 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  .+  =  ( +g  `  ( Gs  S ) ) )
2019oveqd 5960 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  =  ( X ( +g  `  ( Gs  S ) ) Y ) )
2112, 20, 83eltr4d 2288 1  |-  ( ( S  e.  (SubGrp `  G )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12803   ↾s cress 12804   +g cplusg 12880   Grpcgrp 13303  SubGrpcsubg 13474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-subg 13477
This theorem is referenced by:  subgsubcl  13492  subgmulgcl  13494  issubg2m  13496  subgintm  13505  ssnmz  13518  eqger  13531  eqgcpbl  13535  resghm  13567  ghmpreima  13573  subrngacl  13941  subrgacl  13965  islss4  14115  dflidl2rng  14214
  Copyright terms: Public domain W3C validator