ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 Unicode version

Theorem subg0 13386
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subg0.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
subg0  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
43a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 subgrcl 13385 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 4, 5, 6ressplusgd 12831 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
87oveqd 5942 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( ( 0g `  H
) ( +g  `  H
) ( 0g `  H ) ) )
91subggrp 13383 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
10 eqid 2196 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
11 eqid 2196 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
1210, 11grpidcl 13231 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  ( Base `  H
) )
139, 12syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  H )
)
14 eqid 2196 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
1510, 14, 11grplid 13233 . . . 4  |-  ( ( H  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  H
) )  ->  (
( 0g `  H
) ( +g  `  H
) ( 0g `  H ) )  =  ( 0g `  H
) )
169, 13, 15syl2anc 411 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  H ) ( 0g `  H
) )  =  ( 0g `  H ) )
178, 16eqtrd 2229 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( 0g `  H ) )
18 eqid 2196 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 13380 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
201subgbas 13384 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
2113, 20eleqtrrd 2276 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  S
)
2219, 21sseldd 3185 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  G )
)
23 subg0.i . . . 4  |-  .0.  =  ( 0g `  G )
2418, 3, 23grpid 13241 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  G
) )  ->  (
( ( 0g `  H ) ( +g  `  G ) ( 0g
`  H ) )  =  ( 0g `  H )  <->  .0.  =  ( 0g `  H ) ) )
256, 22, 24syl2anc 411 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( 0g `  H
) ( +g  `  G
) ( 0g `  H ) )  =  ( 0g `  H
)  <->  .0.  =  ( 0g `  H ) ) )
2617, 25mpbid 147 1  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   0gc0g 12958   Grpcgrp 13202  SubGrpcsubg 13373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376
This theorem is referenced by:  subginv  13387  subg0cl  13388  subgmulg  13394  subrng0  13839  subrg0  13860
  Copyright terms: Public domain W3C validator