ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 Unicode version

Theorem subg0 13725
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subg0.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
subg0  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2229 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
43a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 subgrcl 13724 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 4, 5, 6ressplusgd 13170 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
87oveqd 6024 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( ( 0g `  H
) ( +g  `  H
) ( 0g `  H ) ) )
91subggrp 13722 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
10 eqid 2229 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
11 eqid 2229 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
1210, 11grpidcl 13570 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  ( Base `  H
) )
139, 12syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  H )
)
14 eqid 2229 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
1510, 14, 11grplid 13572 . . . 4  |-  ( ( H  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  H
) )  ->  (
( 0g `  H
) ( +g  `  H
) ( 0g `  H ) )  =  ( 0g `  H
) )
169, 13, 15syl2anc 411 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  H ) ( 0g `  H
) )  =  ( 0g `  H ) )
178, 16eqtrd 2262 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( 0g `  H ) )
18 eqid 2229 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 13719 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
201subgbas 13723 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
2113, 20eleqtrrd 2309 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  S
)
2219, 21sseldd 3225 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  G )
)
23 subg0.i . . . 4  |-  .0.  =  ( 0g `  G )
2418, 3, 23grpid 13580 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  G
) )  ->  (
( ( 0g `  H ) ( +g  `  G ) ( 0g
`  H ) )  =  ( 0g `  H )  <->  .0.  =  ( 0g `  H ) ) )
256, 22, 24syl2anc 411 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( 0g `  H
) ( +g  `  G
) ( 0g `  H ) )  =  ( 0g `  H
)  <->  .0.  =  ( 0g `  H ) ) )
2617, 25mpbid 147 1  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6007   Basecbs 13040   ↾s cress 13041   +g cplusg 13118   0gc0g 13297   Grpcgrp 13541  SubGrpcsubg 13712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-subg 13715
This theorem is referenced by:  subginv  13726  subg0cl  13727  subgmulg  13733  subrng0  14179  subrg0  14200  mpl0fi  14674
  Copyright terms: Public domain W3C validator