ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 Unicode version

Theorem subg0 13072
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subg0.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
subg0  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2187 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
43a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 subgrcl 13071 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 4, 5, 6ressplusgd 12602 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
87oveqd 5905 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( ( 0g `  H
) ( +g  `  H
) ( 0g `  H ) ) )
91subggrp 13069 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
10 eqid 2187 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
11 eqid 2187 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
1210, 11grpidcl 12926 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  ( Base `  H
) )
139, 12syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  H )
)
14 eqid 2187 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
1510, 14, 11grplid 12928 . . . 4  |-  ( ( H  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  H
) )  ->  (
( 0g `  H
) ( +g  `  H
) ( 0g `  H ) )  =  ( 0g `  H
) )
169, 13, 15syl2anc 411 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  H ) ( 0g `  H
) )  =  ( 0g `  H ) )
178, 16eqtrd 2220 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( 0g `  H ) )
18 eqid 2187 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 13066 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
201subgbas 13070 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
2113, 20eleqtrrd 2267 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  S
)
2219, 21sseldd 3168 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  G )
)
23 subg0.i . . . 4  |-  .0.  =  ( 0g `  G )
2418, 3, 23grpid 12936 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  G
) )  ->  (
( ( 0g `  H ) ( +g  `  G ) ( 0g
`  H ) )  =  ( 0g `  H )  <->  .0.  =  ( 0g `  H ) ) )
256, 22, 24syl2anc 411 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( 0g `  H
) ( +g  `  G
) ( 0g `  H ) )  =  ( 0g `  H
)  <->  .0.  =  ( 0g `  H ) ) )
2617, 25mpbid 147 1  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1363    e. wcel 2158   ` cfv 5228  (class class class)co 5888   Basecbs 12476   ↾s cress 12477   +g cplusg 12551   0gc0g 12723   Grpcgrp 12899  SubGrpcsubg 13059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-iress 12484  df-plusg 12564  df-0g 12725  df-mgm 12794  df-sgrp 12827  df-mnd 12840  df-grp 12902  df-subg 13062
This theorem is referenced by:  subginv  13073  subg0cl  13074  subgmulg  13080  subrng0  13427  subrg0  13448
  Copyright terms: Public domain W3C validator