ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 Unicode version

Theorem subg0 13250
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subg0.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
subg0  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2193 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
43a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 subgrcl 13249 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 4, 5, 6ressplusgd 12746 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
87oveqd 5935 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( ( 0g `  H
) ( +g  `  H
) ( 0g `  H ) ) )
91subggrp 13247 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
10 eqid 2193 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
11 eqid 2193 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
1210, 11grpidcl 13101 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  ( Base `  H
) )
139, 12syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  H )
)
14 eqid 2193 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
1510, 14, 11grplid 13103 . . . 4  |-  ( ( H  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  H
) )  ->  (
( 0g `  H
) ( +g  `  H
) ( 0g `  H ) )  =  ( 0g `  H
) )
169, 13, 15syl2anc 411 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  H ) ( 0g `  H
) )  =  ( 0g `  H ) )
178, 16eqtrd 2226 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( 0g `  H ) )
18 eqid 2193 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 13244 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
201subgbas 13248 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
2113, 20eleqtrrd 2273 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  S
)
2219, 21sseldd 3180 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  G )
)
23 subg0.i . . . 4  |-  .0.  =  ( 0g `  G )
2418, 3, 23grpid 13111 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  G
) )  ->  (
( ( 0g `  H ) ( +g  `  G ) ( 0g
`  H ) )  =  ( 0g `  H )  <->  .0.  =  ( 0g `  H ) ) )
256, 22, 24syl2anc 411 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( 0g `  H
) ( +g  `  G
) ( 0g `  H ) )  =  ( 0g `  H
)  <->  .0.  =  ( 0g `  H ) ) )
2617, 25mpbid 147 1  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   0gc0g 12867   Grpcgrp 13072  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-subg 13240
This theorem is referenced by:  subginv  13251  subg0cl  13252  subgmulg  13258  subrng0  13703  subrg0  13724
  Copyright terms: Public domain W3C validator