ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subg0 Unicode version

Theorem subg0 13560
Description: A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
subg0.h  |-  H  =  ( Gs  S )
subg0.i  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
subg0  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )

Proof of Theorem subg0
StepHypRef Expression
1 subg0.h . . . . . 6  |-  H  =  ( Gs  S )
21a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  S ) )
3 eqid 2206 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
43a1i 9 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 id 19 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 subgrcl 13559 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 4, 5, 6ressplusgd 13005 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  H ) )
87oveqd 5968 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( ( 0g `  H
) ( +g  `  H
) ( 0g `  H ) ) )
91subggrp 13557 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  H  e.  Grp )
10 eqid 2206 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
11 eqid 2206 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
1210, 11grpidcl 13405 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  ( Base `  H
) )
139, 12syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  H )
)
14 eqid 2206 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
1510, 14, 11grplid 13407 . . . 4  |-  ( ( H  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  H
) )  ->  (
( 0g `  H
) ( +g  `  H
) ( 0g `  H ) )  =  ( 0g `  H
) )
169, 13, 15syl2anc 411 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  H ) ( 0g `  H
) )  =  ( 0g `  H ) )
178, 16eqtrd 2239 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( 0g `  H ) ( +g  `  G ) ( 0g `  H
) )  =  ( 0g `  H ) )
18 eqid 2206 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 13554 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
201subgbas 13558 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  =  ( Base `  H )
)
2113, 20eleqtrrd 2286 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  S
)
2219, 21sseldd 3195 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  H )  e.  (
Base `  G )
)
23 subg0.i . . . 4  |-  .0.  =  ( 0g `  G )
2418, 3, 23grpid 13415 . . 3  |-  ( ( G  e.  Grp  /\  ( 0g `  H )  e.  ( Base `  G
) )  ->  (
( ( 0g `  H ) ( +g  `  G ) ( 0g
`  H ) )  =  ( 0g `  H )  <->  .0.  =  ( 0g `  H ) ) )
256, 22, 24syl2anc 411 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( 0g `  H
) ( +g  `  G
) ( 0g `  H ) )  =  ( 0g `  H
)  <->  .0.  =  ( 0g `  H ) ) )
2617, 25mpbid 147 1  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2177   ` cfv 5276  (class class class)co 5951   Basecbs 12876   ↾s cress 12877   +g cplusg 12953   0gc0g 13132   Grpcgrp 13376  SubGrpcsubg 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-subg 13550
This theorem is referenced by:  subginv  13561  subg0cl  13562  subgmulg  13568  subrng0  14013  subrg0  14034  mpl0fi  14508
  Copyright terms: Public domain W3C validator