ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpprsnssdc Unicode version

Theorem ifpprsnssdc 3774
Description: An unordered pair is a singleton or a subset of itself. This theorem is helpful to convert theorems about walks in arbitrary graphs into theorems about walks in pseudographs. (Contributed by AV, 27-Feb-2021.)
Assertion
Ref Expression
ifpprsnssdc  |-  ( ( P  =  { A ,  B }  /\ DECID  A  =  B )  -> if- ( A  =  B ,  P  =  { A } ,  { A ,  B }  C_  P ) )

Proof of Theorem ifpprsnssdc
StepHypRef Expression
1 preq2 3744 . . . . . . 7  |-  ( B  =  A  ->  { A ,  B }  =  { A ,  A }
)
2 dfsn2 3680 . . . . . . 7  |-  { A }  =  { A ,  A }
31, 2eqtr4di 2280 . . . . . 6  |-  ( B  =  A  ->  { A ,  B }  =  { A } )
43eqcoms 2232 . . . . 5  |-  ( A  =  B  ->  { A ,  B }  =  { A } )
54eqeq2d 2241 . . . 4  |-  ( A  =  B  ->  ( P  =  { A ,  B }  <->  P  =  { A } ) )
65biimpcd 159 . . 3  |-  ( P  =  { A ,  B }  ->  ( A  =  B  ->  P  =  { A } ) )
76adantr 276 . 2  |-  ( ( P  =  { A ,  B }  /\ DECID  A  =  B )  ->  ( A  =  B  ->  P  =  { A }
) )
8 eqimss2 3279 . . . 4  |-  ( P  =  { A ,  B }  ->  { A ,  B }  C_  P
)
98a1d 22 . . 3  |-  ( P  =  { A ,  B }  ->  ( -.  A  =  B  ->  { A ,  B }  C_  P ) )
109adantr 276 . 2  |-  ( ( P  =  { A ,  B }  /\ DECID  A  =  B )  ->  ( -.  A  =  B  ->  { A ,  B }  C_  P ) )
11 dfifp2dc 987 . . 3  |-  (DECID  A  =  B  ->  (if- ( A  =  B ,  P  =  { A } ,  { A ,  B }  C_  P
)  <->  ( ( A  =  B  ->  P  =  { A } )  /\  ( -.  A  =  B  ->  { A ,  B }  C_  P
) ) ) )
1211adantl 277 . 2  |-  ( ( P  =  { A ,  B }  /\ DECID  A  =  B )  ->  (if- ( A  =  B ,  P  =  { A } ,  { A ,  B }  C_  P
)  <->  ( ( A  =  B  ->  P  =  { A } )  /\  ( -.  A  =  B  ->  { A ,  B }  C_  P
) ) ) )
137, 10, 12mpbir2and 950 1  |-  ( ( P  =  { A ,  B }  /\ DECID  A  =  B )  -> if- ( A  =  B ,  P  =  { A } ,  { A ,  B }  C_  P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839  if-wif 983    = wceq 1395    C_ wss 3197   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  upgriswlkdc  16071
  Copyright terms: Public domain W3C validator