Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equs45f | Unicode version |
Description: Two ways of expressing substitution when is not free in . (Contributed by NM, 25-Apr-2008.) |
Ref | Expression |
---|---|
equs45f.1 |
Ref | Expression |
---|---|
equs45f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equs45f.1 | . . . . 5 | |
2 | 1 | anim2i 340 | . . . 4 |
3 | 2 | eximi 1588 | . . 3 |
4 | equs5a 1782 | . . 3 | |
5 | 3, 4 | syl 14 | . 2 |
6 | equs4 1713 | . 2 | |
7 | 5, 6 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-11 1494 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sb5f 1792 |
Copyright terms: Public domain | W3C validator |