| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equs45f | GIF version | ||
| Description: Two ways of expressing substitution when 𝑦 is not free in 𝜑. (Contributed by NM, 25-Apr-2008.) |
| Ref | Expression |
|---|---|
| equs45f.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
| Ref | Expression |
|---|---|
| equs45f | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equs45f.1 | . . . . 5 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | anim2i 342 | . . . 4 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → (𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
| 3 | 2 | eximi 1624 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑)) |
| 4 | equs5a 1818 | . . 3 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 5 | 3, 4 | syl 14 | . 2 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 6 | equs4 1749 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 7 | 5, 6 | impbii 126 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-11 1530 ax-4 1534 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sb5f 1828 |
| Copyright terms: Public domain | W3C validator |