ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr2 Unicode version

Theorem exdistr2 1938
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exdistr2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Distinct variable groups:    ph, y    ph, z
Allowed substitution hints:    ph( x)    ps( x, y, z)

Proof of Theorem exdistr2
StepHypRef Expression
1 19.42vv 1935 . 2  |-  ( E. y E. z (
ph  /\  ps )  <->  (
ph  /\  E. y E. z ps ) )
21exbii 1628 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( ph  /\ 
E. y E. z ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-17 1549  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator