ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exdistr Unicode version

Theorem 3exdistr 1903
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3exdistr  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  E. x
( ph  /\  E. y
( ps  /\  E. z ch ) ) )
Distinct variable groups:    ph, y    ph, z    ps, z
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y, z)

Proof of Theorem 3exdistr
StepHypRef Expression
1 3anass 972 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  ( ps  /\  ch ) ) )
212exbii 1594 . . 3  |-  ( E. y E. z (
ph  /\  ps  /\  ch ) 
<->  E. y E. z
( ph  /\  ( ps  /\  ch ) ) )
3 19.42vv 1899 . . 3  |-  ( E. y E. z (
ph  /\  ( ps  /\ 
ch ) )  <->  ( ph  /\ 
E. y E. z
( ps  /\  ch ) ) )
4 exdistr 1897 . . . 4  |-  ( E. y E. z ( ps  /\  ch )  <->  E. y ( ps  /\  E. z ch ) )
54anbi2i 453 . . 3  |-  ( (
ph  /\  E. y E. z ( ps  /\  ch ) )  <->  ( ph  /\ 
E. y ( ps 
/\  E. z ch )
) )
62, 3, 53bitri 205 . 2  |-  ( E. y E. z (
ph  /\  ps  /\  ch ) 
<->  ( ph  /\  E. y ( ps  /\  E. z ch ) ) )
76exbii 1593 1  |-  ( E. x E. y E. z ( ph  /\  ps  /\  ch )  <->  E. x
( ph  /\  E. y
( ps  /\  E. z ch ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator