ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exdistr2 GIF version

Theorem exdistr2 1939
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exdistr2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem exdistr2
StepHypRef Expression
1 19.42vv 1936 . 2 (∃𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝑧𝜓))
21exbii 1629 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator