| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fresison | GIF version | ||
| Description: "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| fresison.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | 
| fresison.min | ⊢ ∃𝑥(𝜓 ∧ 𝜒) | 
| Ref | Expression | 
|---|---|
| fresison | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fresison.min | . 2 ⊢ ∃𝑥(𝜓 ∧ 𝜒) | |
| 2 | simpr 110 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 3 | fresison.maj | . . . . . 6 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 4 | 3 | spi 1550 | . . . . 5 ⊢ (𝜑 → ¬ 𝜓) | 
| 5 | 4 | con2i 628 | . . . 4 ⊢ (𝜓 → ¬ 𝜑) | 
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → ¬ 𝜑) | 
| 7 | 2, 6 | jca 306 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜒 ∧ ¬ 𝜑)) | 
| 8 | 1, 7 | eximii 1616 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |