Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fresison | GIF version |
Description: "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
fresison.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
fresison.min | ⊢ ∃𝑥(𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
fresison | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fresison.min | . 2 ⊢ ∃𝑥(𝜓 ∧ 𝜒) | |
2 | simpr 109 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
3 | fresison.maj | . . . . . 6 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
4 | 3 | spi 1529 | . . . . 5 ⊢ (𝜑 → ¬ 𝜓) |
5 | 4 | con2i 622 | . . . 4 ⊢ (𝜓 → ¬ 𝜑) |
6 | 5 | adantr 274 | . . 3 ⊢ ((𝜓 ∧ 𝜒) → ¬ 𝜑) |
7 | 2, 6 | jca 304 | . 2 ⊢ ((𝜓 ∧ 𝜒) → (𝜒 ∧ ¬ 𝜑)) |
8 | 1, 7 | eximii 1595 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |