ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fresison GIF version

Theorem fresison 2132
Description: "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
fresison.maj 𝑥(𝜑 → ¬ 𝜓)
fresison.min 𝑥(𝜓𝜒)
Assertion
Ref Expression
fresison 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem fresison
StepHypRef Expression
1 fresison.min . 2 𝑥(𝜓𝜒)
2 simpr 109 . . 3 ((𝜓𝜒) → 𝜒)
3 fresison.maj . . . . . 6 𝑥(𝜑 → ¬ 𝜓)
43spi 1524 . . . . 5 (𝜑 → ¬ 𝜓)
54con2i 617 . . . 4 (𝜓 → ¬ 𝜑)
65adantr 274 . . 3 ((𝜓𝜒) → ¬ 𝜑)
72, 6jca 304 . 2 ((𝜓𝜒) → (𝜒 ∧ ¬ 𝜑))
81, 7eximii 1590 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator