ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbbi Unicode version

Theorem hbbi 1528
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  <->  ps ). (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
hb.1  |-  ( ph  ->  A. x ph )
hb.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbbi  |-  ( (
ph 
<->  ps )  ->  A. x
( ph  <->  ps ) )

Proof of Theorem hbbi
StepHypRef Expression
1 dfbi2 386 . 2  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
2 hb.1 . . . 4  |-  ( ph  ->  A. x ph )
3 hb.2 . . . 4  |-  ( ps 
->  A. x ps )
42, 3hbim 1525 . . 3  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )
53, 2hbim 1525 . . 3  |-  ( ( ps  ->  ph )  ->  A. x ( ps  ->  ph ) )
64, 5hban 1527 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  ->  A. x
( ( ph  ->  ps )  /\  ( ps 
->  ph ) ) )
71, 6hbxfrbi 1452 1  |-  ( (
ph 
<->  ps )  ->  A. x
( ph  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-i5r 1515
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  euf  2011  sb8euh  2029
  Copyright terms: Public domain W3C validator