| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbbi | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| hb.1 |
|
| hb.2 |
|
| Ref | Expression |
|---|---|
| hbbi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 |
. 2
| |
| 2 | hb.1 |
. . . 4
| |
| 3 | hb.2 |
. . . 4
| |
| 4 | 2, 3 | hbim 1559 |
. . 3
|
| 5 | 3, 2 | hbim 1559 |
. . 3
|
| 6 | 4, 5 | hban 1561 |
. 2
|
| 7 | 1, 6 | hbxfrbi 1486 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: euf 2050 sb8euh 2068 |
| Copyright terms: Public domain | W3C validator |