ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hban Unicode version

Theorem hban 1535
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  /\  ps ). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Hypotheses
Ref Expression
hb.1  |-  ( ph  ->  A. x ph )
hb.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hban  |-  ( (
ph  /\  ps )  ->  A. x ( ph  /\ 
ps ) )

Proof of Theorem hban
StepHypRef Expression
1 hb.1 . . 3  |-  ( ph  ->  A. x ph )
2 hb.2 . . 3  |-  ( ps 
->  A. x ps )
31, 2anim12i 336 . 2  |-  ( (
ph  /\  ps )  ->  ( A. x ph  /\ 
A. x ps )
)
4 19.26 1469 . 2  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
53, 4sylibr 133 1  |-  ( (
ph  /\  ps )  ->  A. x ( ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbbi  1536  hb3an  1538  hbsbv  1929  mopick  2092  eupicka  2094  mopick2  2097  cleqh  2266
  Copyright terms: Public domain W3C validator