Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbim | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
hb.1 | |
hb.2 |
Ref | Expression |
---|---|
hbim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1503 | . . 3 | |
2 | hb.2 | . . 3 | |
3 | 1, 2 | imim12i 59 | . 2 |
4 | ax-i5r 1528 | . 2 | |
5 | hb.1 | . . . 4 | |
6 | 5 | imim1i 60 | . . 3 |
7 | 6 | alimi 1448 | . 2 |
8 | 3, 4, 7 | 3syl 17 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1440 ax-gen 1442 ax-4 1503 ax-i5r 1528 |
This theorem is referenced by: hbbi 1541 hbia1 1545 19.21h 1550 19.38 1669 hbsbv 1934 hbmo1 2057 hbmo 2058 moexexdc 2103 2eu4 2112 cleqh 2270 hbral 2499 |
Copyright terms: Public domain | W3C validator |