| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbim | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| hb.1 |
|
| hb.2 |
|
| Ref | Expression |
|---|---|
| hbim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1533 |
. . 3
| |
| 2 | hb.2 |
. . 3
| |
| 3 | 1, 2 | imim12i 59 |
. 2
|
| 4 | ax-i5r 1558 |
. 2
| |
| 5 | hb.1 |
. . . 4
| |
| 6 | 5 | imim1i 60 |
. . 3
|
| 7 | 6 | alimi 1478 |
. 2
|
| 8 | 3, 4, 7 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1470 ax-gen 1472 ax-4 1533 ax-i5r 1558 |
| This theorem is referenced by: hbbi 1571 hbia1 1575 19.21h 1580 19.38 1699 hbsbv 1969 hbmo1 2092 hbmo 2093 moexexdc 2138 2eu4 2147 cleqh 2305 hbral 2535 |
| Copyright terms: Public domain | W3C validator |