| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbim | Unicode version | ||
| Description: If  | 
| Ref | Expression | 
|---|---|
| hb.1 | 
 | 
| hb.2 | 
 | 
| Ref | Expression | 
|---|---|
| hbim | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-4 1524 | 
. . 3
 | |
| 2 | hb.2 | 
. . 3
 | |
| 3 | 1, 2 | imim12i 59 | 
. 2
 | 
| 4 | ax-i5r 1549 | 
. 2
 | |
| 5 | hb.1 | 
. . . 4
 | |
| 6 | 5 | imim1i 60 | 
. . 3
 | 
| 7 | 6 | alimi 1469 | 
. 2
 | 
| 8 | 3, 4, 7 | 3syl 17 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-4 1524 ax-i5r 1549 | 
| This theorem is referenced by: hbbi 1562 hbia1 1566 19.21h 1571 19.38 1690 hbsbv 1960 hbmo1 2083 hbmo 2084 moexexdc 2129 2eu4 2138 cleqh 2296 hbral 2526 | 
| Copyright terms: Public domain | W3C validator |