ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbim Unicode version

Theorem hbim 1538
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  ->  ps ). (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 3-Mar-2008.) (Revised by Mario Carneiro, 2-Feb-2015.)
Hypotheses
Ref Expression
hb.1  |-  ( ph  ->  A. x ph )
hb.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbim  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )

Proof of Theorem hbim
StepHypRef Expression
1 ax-4 1503 . . 3  |-  ( A. x ph  ->  ph )
2 hb.2 . . 3  |-  ( ps 
->  A. x ps )
31, 2imim12i 59 . 2  |-  ( (
ph  ->  ps )  -> 
( A. x ph  ->  A. x ps )
)
4 ax-i5r 1528 . 2  |-  ( ( A. x ph  ->  A. x ps )  ->  A. x ( A. x ph  ->  ps ) )
5 hb.1 . . . 4  |-  ( ph  ->  A. x ph )
65imim1i 60 . . 3  |-  ( ( A. x ph  ->  ps )  ->  ( ph  ->  ps ) )
76alimi 1448 . 2  |-  ( A. x ( A. x ph  ->  ps )  ->  A. x ( ph  ->  ps ) )
83, 4, 73syl 17 1  |-  ( (
ph  ->  ps )  ->  A. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1440  ax-gen 1442  ax-4 1503  ax-i5r 1528
This theorem is referenced by:  hbbi  1541  hbia1  1545  19.21h  1550  19.38  1669  hbsbv  1934  hbmo1  2057  hbmo  2058  moexexdc  2103  2eu4  2112  cleqh  2270  hbral  2499
  Copyright terms: Public domain W3C validator