ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8euh Unicode version

Theorem sb8euh 2022
Description: Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
Hypothesis
Ref Expression
sb8euh.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
sb8euh  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )

Proof of Theorem sb8euh
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-17 1506 . . . . 5  |-  ( (
ph 
<->  x  =  z )  ->  A. w ( ph  <->  x  =  z ) )
21sb8h 1826 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  <->  A. w [ w  /  x ] ( ph  <->  x  =  z ) )
3 sbbi 1932 . . . . . 6  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  <->  ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
4 sb8euh.1 . . . . . . . 8  |-  ( ph  ->  A. y ph )
54hbsb 1922 . . . . . . 7  |-  ( [ w  /  x ] ph  ->  A. y [ w  /  x ] ph )
6 equsb3 1924 . . . . . . . 8  |-  ( [ w  /  x ]
x  =  z  <->  w  =  z )
7 ax-17 1506 . . . . . . . 8  |-  ( w  =  z  ->  A. y  w  =  z )
86, 7hbxfrbi 1448 . . . . . . 7  |-  ( [ w  /  x ]
x  =  z  ->  A. y [ w  /  x ] x  =  z )
95, 8hbbi 1527 . . . . . 6  |-  ( ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z
)  ->  A. y
( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
103, 9hbxfrbi 1448 . . . . 5  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  ->  A. y [ w  /  x ] ( ph  <->  x  =  z ) )
11 ax-17 1506 . . . . 5  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  ->  A. w [ y  /  x ] ( ph  <->  x  =  z ) )
12 sbequ 1812 . . . . 5  |-  ( w  =  y  ->  ( [ w  /  x ] ( ph  <->  x  =  z )  <->  [ y  /  x ] ( ph  <->  x  =  z ) ) )
1310, 11, 12cbvalh 1726 . . . 4  |-  ( A. w [ w  /  x ] ( ph  <->  x  =  z )  <->  A. y [ y  /  x ] ( ph  <->  x  =  z ) )
14 equsb3 1924 . . . . . 6  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
1514sblbis 1933 . . . . 5  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  <->  ( [ y  /  x ] ph  <->  y  =  z ) )
1615albii 1446 . . . 4  |-  ( A. y [ y  /  x ] ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
172, 13, 163bitri 205 . . 3  |-  ( A. x ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
1817exbii 1584 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
19 df-eu 2002 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
20 df-eu 2002 . 2  |-  ( E! y [ y  /  x ] ph  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
2118, 19, 203bitr4i 211 1  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329   E.wex 1468   [wsb 1735   E!weu 1999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1437  df-sb 1736  df-eu 2002
This theorem is referenced by:  eu1  2024
  Copyright terms: Public domain W3C validator