| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euf | Unicode version | ||
| Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) |
| Ref | Expression |
|---|---|
| euf.1 |
|
| Ref | Expression |
|---|---|
| euf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2057 |
. 2
| |
| 2 | euf.1 |
. . . . 5
| |
| 3 | ax-17 1549 |
. . . . 5
| |
| 4 | 2, 3 | hbbi 1571 |
. . . 4
|
| 5 | 4 | hbal 1500 |
. . 3
|
| 6 | ax-17 1549 |
. . 3
| |
| 7 | equequ2 1736 |
. . . . 5
| |
| 8 | 7 | bibi2d 232 |
. . . 4
|
| 9 | 8 | albidv 1847 |
. . 3
|
| 10 | 5, 6, 9 | cbvexh 1778 |
. 2
|
| 11 | 1, 10 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-eu 2057 |
| This theorem is referenced by: eu1 2079 eumo0 2085 |
| Copyright terms: Public domain | W3C validator |