| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > euf | Unicode version | ||
| Description: A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| euf.1 | 
 | 
| Ref | Expression | 
|---|---|
| euf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-eu 2048 | 
. 2
 | |
| 2 | euf.1 | 
. . . . 5
 | |
| 3 | ax-17 1540 | 
. . . . 5
 | |
| 4 | 2, 3 | hbbi 1562 | 
. . . 4
 | 
| 5 | 4 | hbal 1491 | 
. . 3
 | 
| 6 | ax-17 1540 | 
. . 3
 | |
| 7 | equequ2 1727 | 
. . . . 5
 | |
| 8 | 7 | bibi2d 232 | 
. . . 4
 | 
| 9 | 8 | albidv 1838 | 
. . 3
 | 
| 10 | 5, 6, 9 | cbvexh 1769 | 
. 2
 | 
| 11 | 1, 10 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-eu 2048 | 
| This theorem is referenced by: eu1 2070 eumo0 2076 | 
| Copyright terms: Public domain | W3C validator |