| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbe1a | GIF version | ||
| Description: Dual statement of hbe1 1519. (Contributed by Wolf Lammen, 15-Sep-2021.) |
| Ref | Expression |
|---|---|
| hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1565 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | nf3 1693 | . . 3 ⊢ (Ⅎ𝑥∀𝑥𝜑 ↔ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| 4 | 3 | spi 1560 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 Ⅎwnf 1484 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nf5-1 2053 |
| Copyright terms: Public domain | W3C validator |