![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbe1a | GIF version |
Description: Dual statement of hbe1 1495. (Contributed by Wolf Lammen, 15-Sep-2021.) |
Ref | Expression |
---|---|
hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1541 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | nf3 1669 | . . 3 ⊢ (Ⅎ𝑥∀𝑥𝜑 ↔ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
4 | 3 | spi 1536 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 Ⅎwnf 1460 ∃wex 1492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-ial 1534 ax-i5r 1535 |
This theorem depends on definitions: df-bi 117 df-nf 1461 |
This theorem is referenced by: nf5-1 2024 |
Copyright terms: Public domain | W3C validator |