| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbe1a | GIF version | ||
| Description: Dual statement of hbe1 1509. (Contributed by Wolf Lammen, 15-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfa1 1555 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 2 | nf3 1683 | . . 3 ⊢ (Ⅎ𝑥∀𝑥𝜑 ↔ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | 
| 4 | 3 | spi 1550 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: nf5-1 2043 | 
| Copyright terms: Public domain | W3C validator |