![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbe1a | GIF version |
Description: Dual statement of hbe1 1505. (Contributed by Wolf Lammen, 15-Sep-2021.) |
Ref | Expression |
---|---|
hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1551 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | nf3 1679 | . . 3 ⊢ (Ⅎ𝑥∀𝑥𝜑 ↔ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
4 | 3 | spi 1546 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1361 Ⅎwnf 1470 ∃wex 1502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-ial 1544 ax-i5r 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1471 |
This theorem is referenced by: nf5-1 2034 |
Copyright terms: Public domain | W3C validator |