Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbe1a | GIF version |
Description: Dual statement of hbe1 1488. (Contributed by Wolf Lammen, 15-Sep-2021.) |
Ref | Expression |
---|---|
hbe1a | ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | nf3 1662 | . . 3 ⊢ (Ⅎ𝑥∀𝑥𝜑 ↔ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑)) | |
3 | 1, 2 | mpbi 144 | . 2 ⊢ ∀𝑥(∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
4 | 3 | spi 1529 | 1 ⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nf5-1 2017 |
Copyright terms: Public domain | W3C validator |