ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1a GIF version

Theorem hbe1a 2039
Description: Dual statement of hbe1 1506. (Contributed by Wolf Lammen, 15-Sep-2021.)
Assertion
Ref Expression
hbe1a (∃𝑥𝑥𝜑 → ∀𝑥𝜑)

Proof of Theorem hbe1a
StepHypRef Expression
1 nfa1 1552 . . 3 𝑥𝑥𝜑
2 nf3 1680 . . 3 (Ⅎ𝑥𝑥𝜑 ↔ ∀𝑥(∃𝑥𝑥𝜑 → ∀𝑥𝜑))
31, 2mpbi 145 . 2 𝑥(∃𝑥𝑥𝜑 → ∀𝑥𝜑)
43spi 1547 1 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wnf 1471  wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nf5-1  2040
  Copyright terms: Public domain W3C validator