ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbe1a GIF version

Theorem hbe1a 2011
Description: Dual statement of hbe1 1483. (Contributed by Wolf Lammen, 15-Sep-2021.)
Assertion
Ref Expression
hbe1a (∃𝑥𝑥𝜑 → ∀𝑥𝜑)

Proof of Theorem hbe1a
StepHypRef Expression
1 nfa1 1529 . . 3 𝑥𝑥𝜑
2 nf3 1657 . . 3 (Ⅎ𝑥𝑥𝜑 ↔ ∀𝑥(∃𝑥𝑥𝜑 → ∀𝑥𝜑))
31, 2mpbi 144 . 2 𝑥(∃𝑥𝑥𝜑 → ∀𝑥𝜑)
43spi 1524 1 (∃𝑥𝑥𝜑 → ∀𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448  wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  nf5-1  2012
  Copyright terms: Public domain W3C validator