ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbn GIF version

Theorem hbn 1647
Description: If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbn.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
hbn 𝜑 → ∀𝑥 ¬ 𝜑)

Proof of Theorem hbn
StepHypRef Expression
1 hbnt 1646 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
2 hbn.1 . 2 (𝜑 → ∀𝑥𝜑)
31, 2mpg 1444 1 𝜑 → ∀𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  hbnae  1714  sbn  1945  euor  2045  euor2  2077
  Copyright terms: Public domain W3C validator