ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbn Unicode version

Theorem sbn 1945
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbn  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )

Proof of Theorem sbn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbnv 1881 . . . 4  |-  ( [ z  /  x ]  -.  ph  <->  -.  [ z  /  x ] ph )
21sbbii 1758 . . 3  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  z ]  -.  [ z  /  x ] ph )
3 sbnv 1881 . . 3  |-  ( [ y  /  z ]  -.  [ z  /  x ] ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
5 ax-17 1519 . . . 4  |-  ( ph  ->  A. z ph )
65hbn 1647 . . 3  |-  ( -. 
ph  ->  A. z  -.  ph )
76sbco2vh 1938 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  x ]  -.  ph )
85sbco2vh 1938 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
98notbii 663 . 2  |-  ( -. 
[ y  /  z ] [ z  /  x ] ph  <->  -.  [ y  /  x ] ph )
104, 7, 93bitr3i 209 1  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756
This theorem is referenced by:  sbcng  2995  difab  3396  rabeq0  3444  abeq0  3445  ssfirab  6911
  Copyright terms: Public domain W3C validator