Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbn | Unicode version |
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sbn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbnv 1881 | . . . 4 | |
2 | 1 | sbbii 1758 | . . 3 |
3 | sbnv 1881 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | ax-17 1519 | . . . 4 | |
6 | 5 | hbn 1647 | . . 3 |
7 | 6 | sbco2vh 1938 | . 2 |
8 | 5 | sbco2vh 1938 | . . 3 |
9 | 8 | notbii 663 | . 2 |
10 | 4, 7, 9 | 3bitr3i 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbcng 2995 difab 3396 rabeq0 3444 abeq0 3445 ssfirab 6911 |
Copyright terms: Public domain | W3C validator |