ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbn Unicode version

Theorem sbn 1968
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbn  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )

Proof of Theorem sbn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbnv 1900 . . . 4  |-  ( [ z  /  x ]  -.  ph  <->  -.  [ z  /  x ] ph )
21sbbii 1776 . . 3  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  z ]  -.  [ z  /  x ] ph )
3 sbnv 1900 . . 3  |-  ( [ y  /  z ]  -.  [ z  /  x ] ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
42, 3bitri 184 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
5 ax-17 1537 . . . 4  |-  ( ph  ->  A. z ph )
65hbn 1665 . . 3  |-  ( -. 
ph  ->  A. z  -.  ph )
76sbco2vh 1961 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  x ]  -.  ph )
85sbco2vh 1961 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
98notbii 669 . 2  |-  ( -. 
[ y  /  z ] [ z  /  x ] ph  <->  -.  [ y  /  x ] ph )
104, 7, 93bitr3i 210 1  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774
This theorem is referenced by:  sbcng  3026  difab  3428  rabeq0  3476  abeq0  3477  ssfirab  6990
  Copyright terms: Public domain W3C validator