ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbn Unicode version

Theorem sbn 1940
Description: Negation inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.)
Assertion
Ref Expression
sbn  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )

Proof of Theorem sbn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbnv 1876 . . . 4  |-  ( [ z  /  x ]  -.  ph  <->  -.  [ z  /  x ] ph )
21sbbii 1753 . . 3  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  z ]  -.  [ z  /  x ] ph )
3 sbnv 1876 . . 3  |-  ( [ y  /  z ]  -.  [ z  /  x ] ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
42, 3bitri 183 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  -.  [ y  /  z ] [
z  /  x ] ph )
5 ax-17 1514 . . . 4  |-  ( ph  ->  A. z ph )
65hbn 1642 . . 3  |-  ( -. 
ph  ->  A. z  -.  ph )
76sbco2vh 1933 . 2  |-  ( [ y  /  z ] [ z  /  x ]  -.  ph  <->  [ y  /  x ]  -.  ph )
85sbco2vh 1933 . . 3  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
98notbii 658 . 2  |-  ( -. 
[ y  /  z ] [ z  /  x ] ph  <->  -.  [ y  /  x ] ph )
104, 7, 93bitr3i 209 1  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbcng  2991  difab  3391  rabeq0  3438  abeq0  3439  ssfirab  6899
  Copyright terms: Public domain W3C validator