ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euor Unicode version

Theorem euor 2045
Description: Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 21-Oct-2005.)
Hypothesis
Ref Expression
euor.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
euor  |-  ( ( -.  ph  /\  E! x ps )  ->  E! x
( ph  \/  ps ) )

Proof of Theorem euor
StepHypRef Expression
1 euor.1 . . . 4  |-  ( ph  ->  A. x ph )
21hbn 1647 . . 3  |-  ( -. 
ph  ->  A. x  -.  ph )
3 biorf 739 . . 3  |-  ( -. 
ph  ->  ( ps  <->  ( ph  \/  ps ) ) )
42, 3eubidh 2025 . 2  |-  ( -. 
ph  ->  ( E! x ps 
<->  E! x ( ph  \/  ps ) ) )
54biimpa 294 1  |-  ( ( -.  ph  /\  E! x ps )  ->  E! x
( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703   A.wal 1346   E!weu 2019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-eu 2022
This theorem is referenced by:  euorv  2046
  Copyright terms: Public domain W3C validator