ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euor2 Unicode version

Theorem euor2 2094
Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euor2  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )

Proof of Theorem euor2
StepHypRef Expression
1 hbe1 1505 . . 3  |-  ( E. x ph  ->  A. x E. x ph )
21hbn 1664 . 2  |-  ( -. 
E. x ph  ->  A. x  -.  E. x ph )
3 19.8a 1600 . . . 4  |-  ( ph  ->  E. x ph )
43con3i 633 . . 3  |-  ( -. 
E. x ph  ->  -. 
ph )
5 orel1 726 . . . 4  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
6 olc 712 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
75, 6impbid1 142 . . 3  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  <->  ps )
)
84, 7syl 14 . 2  |-  ( -. 
E. x ph  ->  ( ( ph  \/  ps ) 
<->  ps ) )
92, 8eubidh 2042 1  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709   E.wex 1502   E!weu 2036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-eu 2039
This theorem is referenced by:  reuun2  3430
  Copyright terms: Public domain W3C validator