ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euor2 Unicode version

Theorem euor2 2084
Description: Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euor2  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )

Proof of Theorem euor2
StepHypRef Expression
1 hbe1 1495 . . 3  |-  ( E. x ph  ->  A. x E. x ph )
21hbn 1654 . 2  |-  ( -. 
E. x ph  ->  A. x  -.  E. x ph )
3 19.8a 1590 . . . 4  |-  ( ph  ->  E. x ph )
43con3i 632 . . 3  |-  ( -. 
E. x ph  ->  -. 
ph )
5 orel1 725 . . . 4  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
6 olc 711 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
75, 6impbid1 142 . . 3  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  <->  ps )
)
84, 7syl 14 . 2  |-  ( -. 
E. x ph  ->  ( ( ph  \/  ps ) 
<->  ps ) )
92, 8eubidh 2032 1  |-  ( -. 
E. x ph  ->  ( E! x ( ph  \/  ps )  <->  E! x ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708   E.wex 1492   E!weu 2026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-eu 2029
This theorem is referenced by:  reuun2  3420
  Copyright terms: Public domain W3C validator