ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbnae Unicode version

Theorem hbnae 1719
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbnae  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 1716 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
21hbn 1652 1  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359
This theorem is referenced by:  hbnaes  1721  equs5  1827  sbal2  2018
  Copyright terms: Public domain W3C validator