ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbnae Unicode version

Theorem hbnae 1709
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbnae  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 1706 . 2  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
21hbn 1642 1  |-  ( -. 
A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349
This theorem is referenced by:  hbnaes  1711  equs5  1817  sbal2  2008
  Copyright terms: Public domain W3C validator