ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbor Unicode version

Theorem hbor 1539
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  \/  ps ). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
hb.1  |-  ( ph  ->  A. x ph )
hb.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbor  |-  ( (
ph  \/  ps )  ->  A. x ( ph  \/  ps ) )

Proof of Theorem hbor
StepHypRef Expression
1 hb.1 . . 3  |-  ( ph  ->  A. x ph )
2 orc 707 . . . 4  |-  ( ph  ->  ( ph  \/  ps ) )
32alimi 1448 . . 3  |-  ( A. x ph  ->  A. x
( ph  \/  ps ) )
41, 3syl 14 . 2  |-  ( ph  ->  A. x ( ph  \/  ps ) )
5 hb.2 . . 3  |-  ( ps 
->  A. x ps )
6 olc 706 . . . 4  |-  ( ps 
->  ( ph  \/  ps ) )
76alimi 1448 . . 3  |-  ( A. x ps  ->  A. x
( ph  \/  ps ) )
85, 7syl 14 . 2  |-  ( ps 
->  A. x ( ph  \/  ps ) )
94, 8jaoi 711 1  |-  ( (
ph  \/  ps )  ->  A. x ( ph  \/  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 703   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hb3or  1542  nfor  1567  19.43  1621
  Copyright terms: Public domain W3C validator