| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfor | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfor.1 |
|
| nfor.2 |
|
| Ref | Expression |
|---|---|
| nfor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfor.1 |
. . . 4
| |
| 2 | 1 | nfri 1543 |
. . 3
|
| 3 | nfor.2 |
. . . 4
| |
| 4 | 3 | nfri 1543 |
. . 3
|
| 5 | 2, 4 | hbor 1570 |
. 2
|
| 6 | 5 | nfi 1486 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-gen 1473 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: nfdc 1683 nfun 3337 nfpr 3693 nfso 4367 nffrec 6505 indpi 7490 nfsum1 11782 nfsum 11783 nfcprod1 11980 nfcprod 11981 bj-findis 16114 isomninnlem 16171 trirec0 16185 |
| Copyright terms: Public domain | W3C validator |