| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfor | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfor.1 |
|
| nfor.2 |
|
| Ref | Expression |
|---|---|
| nfor |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfor.1 |
. . . 4
| |
| 2 | 1 | nfri 1533 |
. . 3
|
| 3 | nfor.2 |
. . . 4
| |
| 4 | 3 | nfri 1533 |
. . 3
|
| 5 | 2, 4 | hbor 1560 |
. 2
|
| 6 | 5 | nfi 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-gen 1463 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: nfdc 1673 nfun 3319 nfpr 3672 nfso 4337 nffrec 6454 indpi 7407 nfsum1 11505 nfsum 11506 nfcprod1 11703 nfcprod 11704 bj-findis 15592 isomninnlem 15641 trirec0 15655 |
| Copyright terms: Public domain | W3C validator |