ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfor Unicode version

Theorem nfor 1567
Description: If  x is not free in  ph and  ps, it is not free in  ( ph  \/  ps ). (Contributed by Jim Kingdon, 11-Mar-2018.)
Hypotheses
Ref Expression
nfor.1  |-  F/ x ph
nfor.2  |-  F/ x ps
Assertion
Ref Expression
nfor  |-  F/ x
( ph  \/  ps )

Proof of Theorem nfor
StepHypRef Expression
1 nfor.1 . . . 4  |-  F/ x ph
21nfri 1512 . . 3  |-  ( ph  ->  A. x ph )
3 nfor.2 . . . 4  |-  F/ x ps
43nfri 1512 . . 3  |-  ( ps 
->  A. x ps )
52, 4hbor 1539 . 2  |-  ( (
ph  \/  ps )  ->  A. x ( ph  \/  ps ) )
65nfi 1455 1  |-  F/ x
( ph  \/  ps )
Colors of variables: wff set class
Syntax hints:    \/ wo 703   F/wnf 1453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-gen 1442  ax-4 1503
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  nfdc  1652  nfun  3283  nfpr  3633  nfso  4287  nffrec  6375  indpi  7304  nfsum1  11319  nfsum  11320  nfcprod1  11517  nfcprod  11518  bj-findis  14014  isomninnlem  14062  trirec0  14076
  Copyright terms: Public domain W3C validator