ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  risset Unicode version

Theorem risset 2485
Description: Two ways to say " A belongs to  B." (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
risset  |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem risset
StepHypRef Expression
1 exancom 1588 . 2  |-  ( E. x ( x  e.  B  /\  x  =  A )  <->  E. x
( x  =  A  /\  x  e.  B
) )
2 df-rex 2441 . 2  |-  ( E. x  e.  B  x  =  A  <->  E. x
( x  e.  B  /\  x  =  A
) )
3 df-clel 2153 . 2  |-  ( A  e.  B  <->  E. x
( x  =  A  /\  x  e.  B
) )
41, 2, 33bitr4ri 212 1  |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   E.wrex 2436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-4 1490  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-clel 2153  df-rex 2441
This theorem is referenced by:  clel5  2849  reueq  2911  reuind  2917  0el  3416  iunid  3904  sucel  4369  reusv3  4418  fvmptt  5556  releldm2  6127  qsid  6538  rerecclap  8586  nndiv  8857  zq  9517  4fvwrd4  10021  bj-bdcel  13371
  Copyright terms: Public domain W3C validator