ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  risset Unicode version

Theorem risset 2525
Description: Two ways to say " A belongs to  B". (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
risset  |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem risset
StepHypRef Expression
1 exancom 1622 . 2  |-  ( E. x ( x  e.  B  /\  x  =  A )  <->  E. x
( x  =  A  /\  x  e.  B
) )
2 df-rex 2481 . 2  |-  ( E. x  e.  B  x  =  A  <->  E. x
( x  e.  B  /\  x  =  A
) )
3 df-clel 2192 . 2  |-  ( A  e.  B  <->  E. x
( x  =  A  /\  x  e.  B
) )
41, 2, 33bitr4ri 213 1  |-  ( A  e.  B  <->  E. x  e.  B  x  =  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-clel 2192  df-rex 2481
This theorem is referenced by:  clel5  2901  reueq  2963  reuind  2969  0el  3473  iunid  3972  sucel  4445  reusv3  4495  fvmptt  5653  releldm2  6243  qsid  6659  rerecclap  8757  nndiv  9031  zq  9700  4fvwrd4  10215  conjnmzb  13410  bj-bdcel  15483
  Copyright terms: Public domain W3C validator