ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal Unicode version

Theorem hbal 1436
Description: If  x is not free in  ph, it is not free in  A. y ph. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbal  |-  ( A. y ph  ->  A. x A. y ph )

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3  |-  ( ph  ->  A. x ph )
21alimi 1414 . 2  |-  ( A. y ph  ->  A. y A. x ph )
3 ax-7 1407 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
42, 3syl 14 1  |-  ( A. y ph  ->  A. x A. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1406  ax-7 1407  ax-gen 1408
This theorem is referenced by:  hba2  1513  nfal  1538  aaanh  1548  hbex  1598  pm11.53  1849  euf  1980  hbral  2438
  Copyright terms: Public domain W3C validator