Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbal | Unicode version |
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbal.1 |
Ref | Expression |
---|---|
hbal |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbal.1 | . . 3 | |
2 | 1 | alimi 1448 | . 2 |
3 | ax-7 1441 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1440 ax-7 1441 ax-gen 1442 |
This theorem is referenced by: hba2 1544 aaanh 1579 hbex 1629 pm11.53 1888 euf 2024 hbral 2499 |
Copyright terms: Public domain | W3C validator |