ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 Unicode version

Theorem sb2 1790
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1533 . 2  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
2 equs4 1748 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
3 df-sb 1786 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
41, 2, 3sylanbrc 417 1  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1515   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by:  stdpc4  1798  equsb1  1808  equsb2  1809  sbiedh  1810  sb6f  1826  hbsb2a  1829  hbsb2e  1830  sbcof2  1833  sb3  1854  sb4b  1857  sb4bor  1858  hbsb2  1859  nfsb2or  1860  sb6rf  1876  sbi1v  1915  sbalyz  2027  iota4  5251
  Copyright terms: Public domain W3C validator