ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 Unicode version

Theorem sb2 1755
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1498 . 2  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
2 equs4 1713 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
3 df-sb 1751 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
41, 2, 3sylanbrc 414 1  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  stdpc4  1763  equsb1  1773  equsb2  1774  sbiedh  1775  sb6f  1791  hbsb2a  1794  hbsb2e  1795  sbcof2  1798  sb3  1819  sb4b  1822  sb4bor  1823  hbsb2  1824  nfsb2or  1825  sb6rf  1841  sbi1v  1879  sbalyz  1987  iota4  5171
  Copyright terms: Public domain W3C validator