ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb2 Unicode version

Theorem sb2 1765
Description: One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb2  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )

Proof of Theorem sb2
StepHypRef Expression
1 ax-4 1508 . 2  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
2 equs4 1723 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph )
)
3 df-sb 1761 . 2  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
41, 2, 3sylanbrc 417 1  |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1490   [wsb 1760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-4 1508  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-sb 1761
This theorem is referenced by:  stdpc4  1773  equsb1  1783  equsb2  1784  sbiedh  1785  sb6f  1801  hbsb2a  1804  hbsb2e  1805  sbcof2  1808  sb3  1829  sb4b  1832  sb4bor  1833  hbsb2  1834  nfsb2or  1835  sb6rf  1851  sbi1v  1889  sbalyz  1997  iota4  5188
  Copyright terms: Public domain W3C validator