| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbsb2e | GIF version | ||
| Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) | 
| Ref | Expression | 
|---|---|
| hbsb2e | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sb4e 1819 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
| 2 | sb2 1781 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑) | |
| 3 | 2 | a5i 1557 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | 
| 4 | 1, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-11 1520 ax-4 1524 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |