Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb3 | Unicode version |
Description: If is not free in , is not free in . (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbsb3.1 |
Ref | Expression |
---|---|
hbsb3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbsb3.1 | . . 3 | |
2 | 1 | sbimi 1752 | . 2 |
3 | hbsb2a 1794 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-11 1494 ax-4 1498 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: nfs1 1797 sbcof2 1798 ax16 1801 sb8h 1842 sb8eh 1843 ax16ALT 1847 |
Copyright terms: Public domain | W3C validator |