ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb3 Unicode version

Theorem hbsb3 1808
Description: If  y is not free in  ph,  x is not free in  [ y  /  x ] ph. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbsb3.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
hbsb3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )

Proof of Theorem hbsb3
StepHypRef Expression
1 hbsb3.1 . . 3  |-  ( ph  ->  A. y ph )
21sbimi 1764 . 2  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] A. y ph )
3 hbsb2a 1806 . 2  |-  ( [ y  /  x ] A. y ph  ->  A. x [ y  /  x ] ph )
42, 3syl 14 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-11 1506  ax-4 1510  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by:  nfs1  1809  sbcof2  1810  ax16  1813  sb8h  1854  sb8eh  1855  ax16ALT  1859
  Copyright terms: Public domain W3C validator