ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsb3 Unicode version

Theorem hbsb3 1801
Description: If  y is not free in  ph,  x is not free in  [ y  /  x ] ph. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbsb3.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
hbsb3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )

Proof of Theorem hbsb3
StepHypRef Expression
1 hbsb3.1 . . 3  |-  ( ph  ->  A. y ph )
21sbimi 1757 . 2  |-  ( [ y  /  x ] ph  ->  [ y  /  x ] A. y ph )
3 hbsb2a 1799 . 2  |-  ( [ y  /  x ] A. y ph  ->  A. x [ y  /  x ] ph )
42, 3syl 14 1  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-11 1499  ax-4 1503  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  nfs1  1802  sbcof2  1803  ax16  1806  sb8h  1847  sb8eh  1848  ax16ALT  1852
  Copyright terms: Public domain W3C validator