Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.21nd | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm5.21nd.1 | |
pm5.21nd.2 | |
pm5.21nd.3 |
Ref | Expression |
---|---|
pm5.21nd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nd.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | pm5.21nd.2 | . . 3 | |
4 | 3 | ex 114 | . 2 |
5 | pm5.21nd.3 | . . 3 | |
6 | 5 | a1i 9 | . 2 |
7 | 2, 4, 6 | pm5.21ndd 695 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ideqg 4755 fvelimab 5542 releldm2 6153 relelec 6541 fzrev3 10022 elfzp12 10034 eltg 12692 eltg2 12693 cncnp2m 12871 |
Copyright terms: Public domain | W3C validator |