ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdif0im Unicode version

Theorem ssdif0im 3473
Description: Subclass implies empty difference. One direction of Exercise 7 of [TakeutiZaring] p. 22. In classical logic this would be an equivalence. (Contributed by Jim Kingdon, 2-Aug-2018.)
Assertion
Ref Expression
ssdif0im  |-  ( A 
C_  B  ->  ( A  \  B )  =  (/) )

Proof of Theorem ssdif0im
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imanim 678 . . . 4  |-  ( ( x  e.  A  ->  x  e.  B )  ->  -.  ( x  e.  A  /\  -.  x  e.  B ) )
2 eldif 3125 . . . 4  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
31, 2sylnibr 667 . . 3  |-  ( ( x  e.  A  ->  x  e.  B )  ->  -.  x  e.  ( A  \  B ) )
43alimi 1443 . 2  |-  ( A. x ( x  e.  A  ->  x  e.  B )  ->  A. x  -.  x  e.  ( A  \  B ) )
5 dfss2 3131 . 2  |-  ( A 
C_  B  <->  A. x
( x  e.  A  ->  x  e.  B ) )
6 eq0 3427 . 2  |-  ( ( A  \  B )  =  (/)  <->  A. x  -.  x  e.  ( A  \  B
) )
74, 5, 63imtr4i 200 1  |-  ( A 
C_  B  ->  ( A  \  B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136    \ cdif 3113    C_ wss 3116   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  vdif0im  3474  difrab0eqim  3475  difid  3477  difin0  3482
  Copyright terms: Public domain W3C validator