| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > inssdif0im | Unicode version | ||
| Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.) | 
| Ref | Expression | 
|---|---|
| inssdif0im | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3346 | 
. . . . . 6
 | |
| 2 | 1 | imbi1i 238 | 
. . . . 5
 | 
| 3 | imanim 689 | 
. . . . 5
 | |
| 4 | 2, 3 | sylbi 121 | 
. . . 4
 | 
| 5 | eldif 3166 | 
. . . . . 6
 | |
| 6 | 5 | anbi2i 457 | 
. . . . 5
 | 
| 7 | elin 3346 | 
. . . . 5
 | |
| 8 | anass 401 | 
. . . . 5
 | |
| 9 | 6, 7, 8 | 3bitr4ri 213 | 
. . . 4
 | 
| 10 | 4, 9 | sylnib 677 | 
. . 3
 | 
| 11 | 10 | alimi 1469 | 
. 2
 | 
| 12 | dfss2 3172 | 
. 2
 | |
| 13 | eq0 3469 | 
. 2
 | |
| 14 | 11, 12, 13 | 3imtr4i 201 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: disjdif 3523 | 
| Copyright terms: Public domain | W3C validator |