ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im Unicode version

Theorem inssdif0im 3518
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )

Proof of Theorem inssdif0im
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3346 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21imbi1i 238 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C ) )
3 imanim 689 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
42, 3sylbi 121 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
5 eldif 3166 . . . . . 6  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65anbi2i 457 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  ( B  \  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 elin 3346 . . . . 5  |-  ( x  e.  ( A  i^i  ( B  \  C ) )  <->  ( x  e.  A  /\  x  e.  ( B  \  C
) ) )
8 anass 401 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
96, 7, 83bitr4ri 213 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  x  e.  ( A  i^i  ( B  \  C ) ) )
104, 9sylnib 677 . . 3  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  x  e.  ( A  i^i  ( B 
\  C ) ) )
1110alimi 1469 . 2  |-  ( A. x ( x  e.  ( A  i^i  B
)  ->  x  e.  C )  ->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
12 dfss2 3172 . 2  |-  ( ( A  i^i  B ) 
C_  C  <->  A. x
( x  e.  ( A  i^i  B )  ->  x  e.  C
) )
13 eq0 3469 . 2  |-  ( ( A  i^i  ( B 
\  C ) )  =  (/)  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1411, 12, 133imtr4i 201 1  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2167    \ cdif 3154    i^i cin 3156    C_ wss 3157   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  disjdif  3523
  Copyright terms: Public domain W3C validator