Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssdif0im | Unicode version |
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
inssdif0im |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3305 | . . . . . 6 | |
2 | 1 | imbi1i 237 | . . . . 5 |
3 | imanim 678 | . . . . 5 | |
4 | 2, 3 | sylbi 120 | . . . 4 |
5 | eldif 3125 | . . . . . 6 | |
6 | 5 | anbi2i 453 | . . . . 5 |
7 | elin 3305 | . . . . 5 | |
8 | anass 399 | . . . . 5 | |
9 | 6, 7, 8 | 3bitr4ri 212 | . . . 4 |
10 | 4, 9 | sylnib 666 | . . 3 |
11 | 10 | alimi 1443 | . 2 |
12 | dfss2 3131 | . 2 | |
13 | eq0 3427 | . 2 | |
14 | 11, 12, 13 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1341 wceq 1343 wcel 2136 cdif 3113 cin 3115 wss 3116 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 |
This theorem is referenced by: disjdif 3481 |
Copyright terms: Public domain | W3C validator |