ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im Unicode version

Theorem inssdif0im 3536
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )

Proof of Theorem inssdif0im
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3364 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21imbi1i 238 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C ) )
3 imanim 690 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
42, 3sylbi 121 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
5 eldif 3183 . . . . . 6  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65anbi2i 457 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  ( B  \  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 elin 3364 . . . . 5  |-  ( x  e.  ( A  i^i  ( B  \  C ) )  <->  ( x  e.  A  /\  x  e.  ( B  \  C
) ) )
8 anass 401 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
96, 7, 83bitr4ri 213 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  x  e.  ( A  i^i  ( B  \  C ) ) )
104, 9sylnib 678 . . 3  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  x  e.  ( A  i^i  ( B 
\  C ) ) )
1110alimi 1479 . 2  |-  ( A. x ( x  e.  ( A  i^i  B
)  ->  x  e.  C )  ->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
12 ssalel 3189 . 2  |-  ( ( A  i^i  B ) 
C_  C  <->  A. x
( x  e.  ( A  i^i  B )  ->  x  e.  C
) )
13 eq0 3487 . 2  |-  ( ( A  i^i  ( B 
\  C ) )  =  (/)  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1411, 12, 133imtr4i 201 1  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2178    \ cdif 3171    i^i cin 3173    C_ wss 3174   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469
This theorem is referenced by:  disjdif  3541
  Copyright terms: Public domain W3C validator