Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssdif0im | Unicode version |
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.) |
Ref | Expression |
---|---|
inssdif0im |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3286 | . . . . . 6 | |
2 | 1 | imbi1i 237 | . . . . 5 |
3 | imanim 678 | . . . . 5 | |
4 | 2, 3 | sylbi 120 | . . . 4 |
5 | eldif 3107 | . . . . . 6 | |
6 | 5 | anbi2i 453 | . . . . 5 |
7 | elin 3286 | . . . . 5 | |
8 | anass 399 | . . . . 5 | |
9 | 6, 7, 8 | 3bitr4ri 212 | . . . 4 |
10 | 4, 9 | sylnib 666 | . . 3 |
11 | 10 | alimi 1432 | . 2 |
12 | dfss2 3113 | . 2 | |
13 | eq0 3408 | . 2 | |
14 | 11, 12, 13 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1330 wceq 1332 wcel 2125 cdif 3095 cin 3097 wss 3098 c0 3390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-in 3104 df-ss 3111 df-nul 3391 |
This theorem is referenced by: disjdif 3462 |
Copyright terms: Public domain | W3C validator |