ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssdif0im Unicode version

Theorem inssdif0im 3457
Description: Intersection, subclass, and difference relationship. In classical logic the converse would also hold. (Contributed by Jim Kingdon, 3-Aug-2018.)
Assertion
Ref Expression
inssdif0im  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )

Proof of Theorem inssdif0im
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3286 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
21imbi1i 237 . . . . 5  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C ) )
3 imanim 678 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
42, 3sylbi 120 . . . 4  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  ( ( x  e.  A  /\  x  e.  B )  /\  -.  x  e.  C )
)
5 eldif 3107 . . . . . 6  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
65anbi2i 453 . . . . 5  |-  ( ( x  e.  A  /\  x  e.  ( B  \  C ) )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
7 elin 3286 . . . . 5  |-  ( x  e.  ( A  i^i  ( B  \  C ) )  <->  ( x  e.  A  /\  x  e.  ( B  \  C
) ) )
8 anass 399 . . . . 5  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  ( x  e.  A  /\  (
x  e.  B  /\  -.  x  e.  C
) ) )
96, 7, 83bitr4ri 212 . . . 4  |-  ( ( ( x  e.  A  /\  x  e.  B
)  /\  -.  x  e.  C )  <->  x  e.  ( A  i^i  ( B  \  C ) ) )
104, 9sylnib 666 . . 3  |-  ( ( x  e.  ( A  i^i  B )  ->  x  e.  C )  ->  -.  x  e.  ( A  i^i  ( B 
\  C ) ) )
1110alimi 1432 . 2  |-  ( A. x ( x  e.  ( A  i^i  B
)  ->  x  e.  C )  ->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
12 dfss2 3113 . 2  |-  ( ( A  i^i  B ) 
C_  C  <->  A. x
( x  e.  ( A  i^i  B )  ->  x  e.  C
) )
13 eq0 3408 . 2  |-  ( ( A  i^i  ( B 
\  C ) )  =  (/)  <->  A. x  -.  x  e.  ( A  i^i  ( B  \  C ) ) )
1411, 12, 133imtr4i 200 1  |-  ( ( A  i^i  B ) 
C_  C  ->  ( A  i^i  ( B  \  C ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332    e. wcel 2125    \ cdif 3095    i^i cin 3097    C_ wss 3098   (/)c0 3390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-dif 3100  df-in 3104  df-ss 3111  df-nul 3391
This theorem is referenced by:  disjdif  3462
  Copyright terms: Public domain W3C validator