ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nominpos Unicode version

Theorem nominpos 9170
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004.)
Assertion
Ref Expression
nominpos  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Distinct variable group:    x, y

Proof of Theorem nominpos
StepHypRef Expression
1 rehalfcl 9160 . . . 4  |-  ( x  e.  RR  ->  (
x  /  2 )  e.  RR )
2 2re 9003 . . . . . . 7  |-  2  e.  RR
3 2pos 9024 . . . . . . 7  |-  0  <  2
4 divgt0 8843 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <  ( x  /  2 ) )
52, 3, 4mpanr12 439 . . . . . 6  |-  ( ( x  e.  RR  /\  0  <  x )  -> 
0  <  ( x  /  2 ) )
65ex 115 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  0  <  ( x  / 
2 ) ) )
7 halfpos 9164 . . . . . 6  |-  ( x  e.  RR  ->  (
0  <  x  <->  ( x  /  2 )  < 
x ) )
87biimpd 144 . . . . 5  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( x  /  2 )  <  x ) )
96, 8jcad 307 . . . 4  |-  ( x  e.  RR  ->  (
0  <  x  ->  ( 0  <  ( x  /  2 )  /\  ( x  /  2
)  <  x )
) )
10 breq2 4019 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
0  <  y  <->  0  <  ( x  /  2 ) ) )
11 breq1 4018 . . . . . 6  |-  ( y  =  ( x  / 
2 )  ->  (
y  <  x  <->  ( x  /  2 )  < 
x ) )
1210, 11anbi12d 473 . . . . 5  |-  ( y  =  ( x  / 
2 )  ->  (
( 0  <  y  /\  y  <  x )  <-> 
( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) ) )
1312rspcev 2853 . . . 4  |-  ( ( ( x  /  2
)  e.  RR  /\  ( 0  <  (
x  /  2 )  /\  ( x  / 
2 )  <  x
) )  ->  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) )
141, 9, 13syl6an 1444 . . 3  |-  ( x  e.  RR  ->  (
0  <  x  ->  E. y  e.  RR  (
0  <  y  /\  y  <  x ) ) )
15 imanim 689 . . 3  |-  ( ( 0  <  x  ->  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )  ->  -.  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) ) )
1614, 15syl 14 . 2  |-  ( x  e.  RR  ->  -.  ( 0  <  x  /\  -.  E. y  e.  RR  ( 0  < 
y  /\  y  <  x ) ) )
1716nrex 2579 1  |-  -.  E. x  e.  RR  (
0  <  x  /\  -.  E. y  e.  RR  ( 0  <  y  /\  y  <  x ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2158   E.wrex 2466   class class class wbr 4015  (class class class)co 5888   RRcr 7824   0cc0 7825    < clt 8006    / cdiv 8643   2c2 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-2 8992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator