ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif Unicode version

Theorem difdif 3275
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif  |-  ( A 
\  ( B  \  A ) )  =  A

Proof of Theorem difdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  \  A ) )  ->  x  e.  A
)
2 pm4.45im 334 . . . 4  |-  ( x  e.  A  <->  ( x  e.  A  /\  (
x  e.  B  ->  x  e.  A )
) )
3 imanim 689 . . . . . 6  |-  ( ( x  e.  B  ->  x  e.  A )  ->  -.  ( x  e.  B  /\  -.  x  e.  A ) )
4 eldif 3153 . . . . . 6  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
53, 4sylnibr 678 . . . . 5  |-  ( ( x  e.  B  ->  x  e.  A )  ->  -.  x  e.  ( B  \  A ) )
65anim2i 342 . . . 4  |-  ( ( x  e.  A  /\  ( x  e.  B  ->  x  e.  A ) )  ->  ( x  e.  A  /\  -.  x  e.  ( B  \  A
) ) )
72, 6sylbi 121 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  /\  -.  x  e.  ( B  \  A ) ) )
81, 7impbii 126 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  \  A ) )  <-> 
x  e.  A )
98difeqri 3270 1  |-  ( A 
\  ( B  \  A ) )  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160    \ cdif 3141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146
This theorem is referenced by:  dif0  3508
  Copyright terms: Public domain W3C validator