ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif Unicode version

Theorem difdif 3247
Description: Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
difdif  |-  ( A 
\  ( B  \  A ) )  =  A

Proof of Theorem difdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  \  A ) )  ->  x  e.  A
)
2 pm4.45im 332 . . . 4  |-  ( x  e.  A  <->  ( x  e.  A  /\  (
x  e.  B  ->  x  e.  A )
) )
3 imanim 678 . . . . . 6  |-  ( ( x  e.  B  ->  x  e.  A )  ->  -.  ( x  e.  B  /\  -.  x  e.  A ) )
4 eldif 3125 . . . . . 6  |-  ( x  e.  ( B  \  A )  <->  ( x  e.  B  /\  -.  x  e.  A ) )
53, 4sylnibr 667 . . . . 5  |-  ( ( x  e.  B  ->  x  e.  A )  ->  -.  x  e.  ( B  \  A ) )
65anim2i 340 . . . 4  |-  ( ( x  e.  A  /\  ( x  e.  B  ->  x  e.  A ) )  ->  ( x  e.  A  /\  -.  x  e.  ( B  \  A
) ) )
72, 6sylbi 120 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  /\  -.  x  e.  ( B  \  A ) ) )
81, 7impbii 125 . 2  |-  ( ( x  e.  A  /\  -.  x  e.  ( B  \  A ) )  <-> 
x  e.  A )
98difeqri 3242 1  |-  ( A 
\  ( B  \  A ) )  =  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118
This theorem is referenced by:  dif0  3479
  Copyright terms: Public domain W3C validator